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A B S T R A C T

This paper explores the ability of Remote Sensing data from space platforms combined with available meteor-
ological parameters to monitor crop biomass accumulation at satellite scale in a direct, operational way, ex-
ploiting the temporal information from time series of multispectral images. We describe a methodology to es-
timate biomass growth by integrating VI-based biophysical parameter and meteorological input along the
growing cycle into the physiologically-based crop growth models, employing water or light use efficiency.

Experimental biomass data of winter and spring wheat (Triticum
aestivum) growing in commercial plots in Albacete, Spain and Ponca
City, OK, USA, under different climates, environment and management,
are compared against modeled data. The results exhibit good agreement
between measured and modeled biomass data for the calibration and
validation datasets. Slopes of the linear relationships provide empirical
values of the efficiencies of the whole process of biomass production:
light use efficiency (LUE), water use efficiency (WUE) and normalized
water productivity (WP*). These values are comparable to the experi-
mental values published in the literature.

1. Introduction

The estimation of biomass production has a prominent role in the
strategies to increase crop productivity and improve management ef-
ficiency. Monitoring biomass production is a diagnostic tool for the
evaluation of crop management because the accumulation of biomass
responds to the coupled effects of climate (Fischer, 1993; Garcia et al.,
1988; Raes et al., 2008) crop genomics (Calderini et al., 1997; Siddique
et al., 1990), and nutrient/water management (Fischer, 1993; Green,
1987; Latiri-souki et al., 1998). The simulation of biomass production
during the growing cycle has interesting application for the assessment
of the fertilization necessities, essential in the strategies of nitrogen
variable doses in coordination with the diagnosis tools for remote es-
timation of nitrogen concentration (Fitzgerald et al., 2006; Houlès
et al., 2007). In addition, biomass accumulation is strongly related to
yield production in grain crops although not in an unequivocal way

(Aase and Siddoway, 1981; Padilla et al., 2012). The crop yield can be
estimated as a variable proportion of total aboveground biomass that
goes into the harvestable parts depending on biotic and abiotic stresses,
the duration, the severity and the physiological stage of the crop during
the stress period (Fischer and Maurer 1978). This proportion is known
as harvest index (HI).

The classical approach to the simulation of biomass production is
the use of a crop growth model (CGM) based on either light or water use
efficiency. This approach relies on the quantitative knowledge of the
parameters describing the canopy interaction with solar radiation and
the exchange of water transpired by the canopy (Hoogenboom 2000).
Simulation of leaf area development is the usual key parameter for the
estimation of fraction of incident PAR that is absorbed by the canopy
(fAPAR) for those CGMs based on Light Use Efficiency (LUE). This is
essentially the background of STICS (Brisson et al., 1998), EPIC
(Williams et al., 1990) and CERES (Jones and Kiniry, 1986) as the crop
growth module in HybridMAIZE and DSSAT (Jones et al., 2003). The
models based on the Water Use Efficiency (WUE) such as AquaCrop
(Steduto et al., 2009) or a hybrid approach like CropSyst (Stockle et al.,
1994) simulate canopy cover development for the estimation of a
transpiration coefficient (Kt), or basal crop coefficient. The ongoing
discussion of the WUE dependence on climate has led to the develop-
ment of normalized WUE by using reference ETo, introducing normal-
ized Water Productivity (WP*). The simulations of the key biophysical
parameter in each model must be adapted for each crop, environmental
conditions and management.

For an operation description of crop biophysical parameters, remote
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sensing (RS) measurements can provide temporal information on plant
responses to dynamic weather conditions and management practices.
Thus, RS approaches exhibit a large potential to provide biomass and
final yield assessments in addition to variations across fields (Pinter
et al., 2003). In the framework of yield/biomass estimates, the use of RS
data has followed three main approaches (Sadras et al., 2015): in-
tegration/assimilation of RS derived variables into CGM, direct re-
flectance-based empirical relationships on selected dates, and biomass
accumulation models. Empirical relationships have interesting appli-
cations for regional yield estimates (Lobell et al., 2003) and yield pre-
diction (Sibley et al., 2014). However, these relationships must be lo-
cally calibrated, considering the uncertainties related with the selection
of the most representative date for the assessment of biomass produc-
tion and spatial variability.

The assimilation of RS data has been frequently proposed in the
scientific literature in order to initialize, calibrate, or update CGMs
(Clevers et al., 1994). On this line Bouman (1992) and Clevers et al.
(1994) proposed the initialization (showing date) and re-parametriza-
tion (canopy expansion parameters) of the SUCROS model based on
radar and canopy reflectance information in sugar beet. Sibley et al.
(2014) assimilates RS-based fPAR estimates into the Hybrid-Maize
model varying the sowing date, seeding density, and maturity rating of
the hybrids (measured as thermal accumulation needed for the crop to
reach physiological maturity). Trombetta et al. (2016) proposed the
modification of the parameters describing the crop phenology and ex-
pansion into AQUACROP based on a relationship between ground cover
and leaf area index (LAI) derived from RS data. Jin et al. (2017a,b)
assimilated ground cover estimates based on optical and radar into the
AQUACROP model. After assimilation, the model is calibrated in terms
of canopy expansion and evaluated for the assessment of grain pro-
duction at regional scale. The calibration of the initial conditions in
assimilation methods can be limited by the availability on input data,
since the number of parameters to be calibrated depend on the variables
actually available. In a simpler approach, Padilla et al. (2012) assimi-
lated RS-based LAI values into the GRAMI model, avoiding the calcu-
lation of the most complex processes such as water stress, nitrogen
nutrition or plant population density. In the same line, the most recent
versions of AQUACROP allows to incorporate canopy cover measure-
ments for a better representation of the crop characteristics. These later
assimilation/integration methods suppose a great simplification, but
still rely on the aptitudes of the models to reproduce the key variables
(PAR absorption or crop transpiration) from related biophysical para-
meters such as LAI or ground cover.

In this work, we specifically focus on the capability of temporal
series of multispectral images combined with available meteorological
data to provide, along the entire growing cycle, the key variables into
the engine of the models based on LUE and WUE for the estimation of
biomass accumulation. We are following the line proposed by Daughtry
et al. (1992) working in corn and soybean with models based on LUE,
but we are extending this approach to the models based on water use
and providing new evidences in a different crop (wheat), monitored in
field conditions, and at the scale of commercial farm. This direct ap-
proach provides a physically-based agronomic monitoring systems
(Daughtry et al., 1992) but it has been hardly explored in the scientific
literature. Special mention deserve the work done by Bastiaanssen and
Ali, (2003), Zheng et al. (2016) and Zwart and Bastiaanssen, (2007)
proposing the integration of RS-based fPAR for the assessment of yield
at regional and global scales and some recent experiments (Campos
et al., 2017b) demonstrating the feasibility of RS-based Kt for the as-
sessment of biomass and yield in corn and soybeans. Nevertheless, the
literature is scarce in comparative studies, analyzing the aptitudes of
the models based on water and light use for a common database.

In contrast with previous research, we compared three different
approaches for the assessment of biomass, from the most common LUE
models to the WUE and WP* approaches. The novelty is the analysis of
light use efficiency and water use efficiency approaches using a

common base for the estimation of the key variables, fPAR and Kt, and
the analysis of the precision of the models under different conditions.
The thorough selection of experimental datasets allows us to evaluate
and discuss, with empirical evidences, the feasibility of these ap-
proaches for wheat under different climatic, management and deficit
conditions. The specific objectives are: i) the estimation of the para-
meters LUE, WUE and WP* for wheat based on the proposed approach;
ii) the evaluation of the three models under field conditions and con-
sidering the possible effect of nitrogen deficit and climatic conditions.
In addition, this paper provides a comprehensive explanation about the
foundations of the use of RS data in CGMs and the benefits and con-
strains of this direct method. Considering that the proposed method
represents a considerable simplification with respect to previous ap-
proaches, we analyzed and discussed with respect to previous research
the model parametrization (LUE, WUE and WP* values) and the ex-
actitude of the models to estimate biomass production.

2. Materials and methodology

2.1. Basis of growth models

Vegetation growth and biomass accumulation occur as consequence
of CO2 assimilation and water transpiration flux through plant stomas
during the photosynthesis process, in which the required energy is
provided by solar radiation (Rosenberg et al., 1983). Attending to the
physiological basis of the process, the classical approaches for growth
simulation are based in the efficiency of the conversion of the water
transpired or the light absorbed into biomass. These two classical
models are known as water use efficiency and light (or radiation) use
efficiency approaches and both approaches represent the core feature of
the “growth-engine” of many crop models (Steduto and Albrizio, 2005).

2.1.1. Biomass production based on radiation/light use efficiency model
Radiation use efficiency was formulated by Monteith (1972) and it

focuses on the relationship between the rate on the dry biomass gain
(Biomass) and the absorbed solar radiation by the leaves in the wave-
lengths of the incident photosynthetically active solar radiation (PAR).
Thus, the relationship is stablished in terms of the PAR absorbed by the
leaves and used in the photosynthesis process (Eq. (1)).

∫=Biomass LUE APARd t· ( )
t

t

o (1)

where Biomass is the dry biomass per unit of surface gain during the
period between t0 and t in g m−2; LUE is the light use (photochemical)
efficiency factor in g MJ−1; APAR, is the PAR absorbed in MJ/m2, re-
presents the photon flux absorbed by the canopy photosynthetic ele-
ments.

2.1.2. Biomass production based on water use efficiency models
The models based on the water use efficiency are probably the in-

itial approaches to crop-growth, based on the quantitative statements
settled by some pioneers like Briggs and Shantz (1913). These models
estimate the rate of Biomass as the integral over the time of the product
of crop transpiration multiplied by the term water use efficiency
(WUE). Considering that the effect of water stress could reduce the crop
transpiration, the relation is stablished in terms of adjusted crop tran-
spiration accounting for water stress conditions (Tc,adj) as presented in
Eq. (2).

∫=Biomass WUE T d t· ( )
t

t

c adj,

o (2)

where Tc,adj, crop transpiration accounting for water stress conditions in
mm; WUE, water use efficiency in g m−2 mm−1, is the slope of the
relationship between Biomass accumulation and Tc,adj.
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2.1.3. Biomass production based on normalized water productivity models
WP*

In spite of the general agreement about the essentially constant (or
linear) relationship between biomass and Tc,adj, the effect of climatic
conditions on these relationships is also recognized. Essentially the
literature distinguishes between the normalization of WUE using vapor
pressure deficit (VPD) or ETo. This discussion was reanalyzed in great
depth by Steduto and Albrizio (2005) and Steduto et al. (2007) con-
cluding the ETo as the best climate normalization for WUE and in-
troducing the concept of normalized water use efficiency (WP*). The
relationship between Biomass and the cumulative value of the ratio
between Tc,adj over ETo is presented in the Eq. (3). This is the metho-
dology followed in the AQUACROP model and popularized in the FAO-
66 manual (Steduto et al., 2012).

∫ ∫= =Biomass WP K
T
ETo

d t WP K K d t*· · ( ) *· · ( )
t

t

st
adj

t

t

st t adj,

o o (3)

where Kt,adj is the crop transpiration coefficient accounting for water
stress conditions, Kst is the temperature stress coefficient and WP* is the
normalized water productivity, in g m−2.

The formulation presented in the Eqs. (1), (2) and (3) assumes that
the efficiencies (LUE, WUE and WP*) are dynamic and could change
during the growing cycle because of factors related with the meteor-
ological conditions and the crop physiology and management. These
factors must be considered but assuming constant values suppose an
operational advantage for the estimation of Biomass production. In this
case, the numerical integration of either APAR, either Tc,adj or Kt,adj

provides biomass accumulation estimates.
PAR absorption is generally approximated by the fraction of PAR

intercepted by the whole canopy (IPAR), assuming that the radiation
interception by non-photosynthetic elements is low (Asrar et al., 1984).
Hence the value of IPAR can be estimated by the product: fPAR*PARin.
fPAR is the fraction of PARin intercepted by the vegetation. The value of
Kt,adj can be estimated by the product of transpiration coefficient (Kt)
and the crop water stress coefficient (Ksw). The coefficient Kt is the ratio
of crop transpiration to atmospheric demand under non-limiting
moisture conditions; equivalent to the basal crop coefficient, Kcb, de-
fined by Allen et al. (1998) but different in terms of the minimum Kt

equal to 0 for bare soil conditions. The coefficient Ksw is the ratio of
actual crop transpiration to crop transpiration under non-limiting
moisture conditions (Tc). By the same definition the value of Tc,adj can
be estimated by the product Kt*Ksw*ETo.

2.2. Integrating remote sensing into the basis of growth models

As described in the previous section, a key point for the models
based on LUE and water use efficiency is the determination of APAR
and Tc,adj, which strongly depend on the parameters fPAR and Kt re-
spectively. These models also depend on the stress coefficients already
mentioned and described in the Section 2.4. The continuous measure-
ment across space and time of fPAR, and Kt parameters is usually dif-
ficult and only possible in few well controlled experiments. Never-
theless, time series of remote sensing data offers a unique way to
monitor fPAR, and Kt during the whole growing season. The estimation
of fPAR and Kt from RS includes empirical relationships with spectral
vegetation indices (VI) and the inversion of analytical models like ra-
diative transfer and spectral mixture analysis approaches. We centered
the analysis using the relationships of fPAR and Kt with VI. Never-
theless, we contemplate that other approaches could be more suitable
to retrieve the needed biophysical parameters for determinate canopies
or scales. Thus the methodology proposed in this paper does not depend
on the method followed and is compatible with other approaches to
compute Kt or fPAR.

2.2.1. Remote sensing of fPAR
The satellite-reflectance based VI is a measurement of canopy light

absorption rather than a surrogate for detailed features of canopy ar-
chitecture (Glenn et al., 2008). The link between fPAR and spectral VI is
well-documented and recurrently presented in the literature by em-
pirical and analytical studies (Calera et al., 2004; Baret and Guyot,
1991; Daughtry et al., 1992; Sellers, 1985). The relationship was de-
monstrated linear if the soil or background material underlying the
canopy is relatively dark (Asrar et al., 1984; Sellers et al., 1992). Lobell
et al. (2003) proposed the estimation of fPAR rescaling the VI between
the minimum values of VI and fPAR for the analyzed canopy, bare soil
conditions, and the maximum values of VI and fPAR. This relationship
(Eq. (4)) accounts for the site to site variations of the minimum VI and
the possible saturation of fPAR before the VI reach its maximum value.

=
− −

−
+fPAR

VI VI fPAR fPAR
VI VI

fPAR
( )·( )

( )
min max min

max min
min

(4)

where VI is the actual value of the analyzed VI, VImin is the minimum
value of VI corresponding to the minimum value of fPAR (fPARmin) and
VImax is the value of the analyzed VI corresponding to the maximum
fPAR (fPARmax) reached by this canopy during the crop growth.

In this work, we used the relationship between fPAR and the nor-
malized difference vegetation index (NDVI) published by Asrar et al.
(1984) for wheat, see Eq. (5). The Eq. (5) is similar to the empirical
regression obtained by Daughtry et al. (1992) in wheat
(fPAR = 1.25·NDVI-0.21) and it is equivalent to Eq. (4) based on the
NDVI and for NDVImin = 0.15, NDVImax = 0.91, fPARmin = 0.001 and
fPARmax = 0.95. These values are withing the ranges of minimum NDVI
determined by Asrar et al. (1984) under base soil conditions, NDVI =
(0.10–0.20) for LAI = 0, and the NDVI determined by these authors for
wheat at full cover, NDVI around 0.9 for LAI> 3. In addition, this
parametrization coincides with the ranges of fPAR considered in pre-
vious studies in wheat (Zheng et al., 2016; Daughtry et al., 1992) and
the maximum value of NDVI is similar to other maximum values re-
ported for wheat (Duchemin et al., 2006). The value of NDVImin is si-
milar to the values obtained in our study for bare soil in the Spanish
study area, and is slightly lower than the minimum values measured in
Ponca (0.18). The use of both minimum values (0.15 or 0.18) results in
a difference lower than the 5% of the average fPAR estimated during
the whole growing cycle for the analyzed dataset. Consequently, we
used the equation proposed by Asrar et al. (1984) in this work and
further adaptations can be specifically developed for other areas.

= −fPAR NDVI·1.25 0.19 (5)

2.2.2. Remote sensing of transpiration coefficient
The estimation of the transpiration coefficient obtained from spec-

tral VI has been widely evaluated for multiple crops (Glenn et al.,
2011). The relationship between Kt and VI used in this work is based on
the method proposed by Choudhury et al. (1994) and modified by
González-Dugo and Mateos (2008). These authors proposed a potential
approach rescaling the VI values between the minimum VI values in the
area (bare soil conditions) and the VI coinciding with the saturation of
the Kt. This relationship (Eq. (6)) accounts for the site to site variations
of the minimum VI. The minimum Kt is assumed equal to 0 in this
formulation.

⎜ ⎟= ⎡
⎣
⎢ − ⎛

⎝

−
−

⎞
⎠

⎤
⎦
⎥K K VI VI

VI VI
· 1 ( )

( )t t max
max

max min

α

,
(6)

where VI is the actual value of the analyzed VI, VImin is the minimum
value of VI corresponding to bare soil conditions, VImax is the value of
the analyzed VI corresponding to the maximum Kt (Kt,max) reached by
this canopy and α is the exponent of the relationship.

In this work, we used the relationship Kt-NDVI published by
Duchemin et al. (2006) for wheat, see Eq. (7). The Eq. (7) is equivalent
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to Eq. (6) based on the NDVI and for NDVImin = 0.14, NDVImax = 0.91,
Kt,max = 1.26 and α = 1 (linear relationship). The range of NDVI
mostly agree with the NDVI values already discussed for wheat in the
study areas. The maximum Kt slightly greater than maximum values
recommended in the FAO-66 (Steduto et al., 2012) and FAO-56 man-
uals (Allen et al., 1998) but this limit coincides with the experimental
values of the transpiration coefficients measured empirically in wheat
(Choudhury et al., 1994; Duchemin et al., 2006). Addition uncertainties
for the used equation is the saturation effect expected for the re-
lationship between LAI and NDVI. It is generally accepted that the NDVI
saturates for LAI around 3 for many canopies (Campos et al., 2017c;
Neale et al., 1989). For wheat, this saturation limit (LAI = 4) coincides
with the saturation of the relationship between Kt and LAI and conse-
quently, the relationship between NDVI and Kt can be considered linear
(Duchemin et al., 2006). Further relationships between the transpira-
tion coefficient and the most recent vegetation indices have been de-
veloped (Marshall et al., 2016) providing promising results. However,
the use of the most basic multispectral indices have been demonstrated
valid for the assessment of Kt in multiple canopies (Bausch and Neale,
1987; Campos et al., 2016; Er-Raki et al., 2007; Hunsaker et al., 2003;
Odi-Lara et al., 2016) and ensures the possibility to use multiple plat-
forms for the assessment of biomass production as reasoned in the
discussion section.

= −K NDVI1.64·( 0.14)t (7)

2.3. Operational estimation of biomass based on the proposed approaches

These previous evidences let us to introduce the formalism of the
relationship between crop biomass production and the accumulated
value of the reflectance based VIs. But this relationship is modulated by
the atmospheric conditions represented by PAR, ETo or Kst (based on air
temperature) as highlighted by Hoogenboom (2000). In addition, the
efficiencies (LUE, WUE and WP*) are generally considered dynamic,
being affected by temperature (high and low) and nutrition (fertiliza-
tion) stresses. The stresses considered in this work and the calculation
procedures are presented in the next section.

The estimation of the biophysical parameters used in each model
(see Fig. 1a) was based in the daily interpolated values of NDVI and the
relationships presented in Eqs. (5) and (7). The method to solve the
integrals presented in Eqs. (1)–(3) is to calculate Biomass by numerical
integration of the dependence function using data in adequate temporal

resolution. The best time scale to simulate the crop biomass production
is daily (Steduto et al., 2012), prompting the necessity of daily values of
the biophysical parameters Kt and fPAR. The meteorological data re-
quired are usually available at daily scale. Thus Kt and fPAR or simply
the used VI must be interpolated from the time-discrete data derived
from RS data. The NDVI describe a smooth-continuous function over
the time when plotted versus the time measured as days, GDD or ac-
cumulated ETo (see Fig. 1a). The high frequency of satellite images
obtained in this study, with around 2–3 images per month, for most of
the analyzed fields, allows for an adequate description of the wheat
development and the daily data can be easily obtained using a linear
interpolation between the available data (see Fig. 1a).

The daily values of the biophysical parameters so obtained are
multiplied by the corresponding meteorological variable, ETo and in-
cident PAR and the daily water stress coefficient in order to compute
the daily values of the variables Tc,adj, IPAR or Kt,adj*Kst. (see Fig. 1b).
The accumulated value of this variables is compared with the crop
Biomass (see Fig. 1c) through linear regression. The slope of this cor-
relation coincides with LUE, WUE or WP* and the interception is ideally
around 0. Although experimental values of LUE, WUE and WP* are
regularly published, the strong variability of LUE and WUE values and
scarcity of WP* data let us to develop of empirical values that will be
evaluated for the validation datasets and discussed with respect to the
values founded in the literature. In this work we initially evaluated the
use of constant values of LUE, WUE or WP* and the necessity to con-
sider dynamic values for each efficiency is discussed in view of the
results.

Biomass estimation is based on a definite integral for which the
dates for T0 and T must be known. In this study, the selection of the date
for the beginning of the biomass accumulation was based on the de-
tection of the green-up phase. The green-up represents the earliest time
that vegetation growth can be reliably detected by satellite and coin-
cides with the inflexion of the curve fitting the temporal evolution of
the NDVI. This inflexion occurred for NDVI values between 0.2 and 0.3
in the analyzed fields (see Fig. 1a) in agreement with the results ob-
tained by (Lobell et al., 2013) for winter wheat growing in India. The
green up does not coincides with the beginning of the biomass accu-
mulation (emergence), but the uncertainty selecting this point with
respect to the emergence date was estimated in less than 50 g m−2.
Conversely, the final of the biomass accumulation occurs before the
inflexion describing the senescence of the wheat canopy. According
with our experience in the direct observation of wheat phenology, the

Fig. 1. a) example of the temporal evolution on the measured NDVI, interpolated values of NDVI, daily values of the fraction of PAR intercepted (fPAR) and transpiration coefficient (Kt)
for the Field 1. b) temporal evolution of the PAR intercepted (IPAR), crop transpiration including water stress (Tc,adj) and the product of the crop transpiration coefficient including water
stress.
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physiological maturity of the grain occurs for NDVI values around 0.4
for irrigated wheat. This empirical evidence is based in few experiments
(20 commercial fields monitored during 10 growing seasons) and could
vary for the different varieties and managements, but was used in this
study in order to delimit the definite integral used for the delimitation
of the growing cycle. For additional information about the estimation of
the maturity stage, the reader is referred to González et al. (2017).

2.4. Estimation of abiotic stress

The abiotic stresses considered in this work were the crop water
stress (Ksw), the cold temperature stress coefficient (Kst) and the ni-
trogen stress characterized by the Nitrogen Nutrition Index (NNI). Both
WP* and WUE are insensitive to crop water stress, already included in
the variable Tc,adj, but this factor could affect LUE for wheat and con-
sequently the effect of the water stress was included in the LUE for-
mulation by multiplying the estimates of IPAR times Ksw at daily scale.
Thermal (cold) stress affects biomass production in wheat and is al-
ready included in the formulation based on WP* by introducing the
coefficient Kst. The effect of cold stress in WUE and LUE models is not
questionable, but at the first approach we did not include the coefficient
Kst into the LUE and WUE models, the convenience of the inclusion of
this coefficient in the noted models is analyzed in the discussion sec-
tion. Finally, the literature is not conclusive about the effect of nitrogen
deficit because this factor reduces essentially the plant development but
not necessarily the efficiency of the actual canopy in producing bio-
mass. This point was analyzed in this study since the validation dataset
includes experimental data of wheat biomass production under ni-
trogen deficit.

The Ksw was computed for every field following the soil water bal-
ance model described in the FAO-56 manual and assimilating the basal
crop coefficient derived from satellite images. The lack of knowledge
with regard the soil properties prevents the use of more complex ap-
proaches as is the case of FAO-66. Even considering the relative sim-
plicity of the FAO-56 approach, the absolute values and the spatial
distribution of those parameters which define the soil water available
for the plants, are subjected to a great uncertainty in commercial fields.

The remote sensing based soil water balance model used in this
work was already discussed in Campos et al. (2017c), Campos et al.
(2016) and Gonzalez-Dugo et al. (2009). The model was applied in a
diagnostic mode, so the meteorological data and actual irrigation data
were assimilated in the model and the water stress, Ksw, was simulated.
For further information about the model, the reader is referred to the
previous references. The main difference with respect to previous ap-
proaches in the parametrization in terms of root depth and soil prop-
erties. The temporal evolution of Ksw analyzed in this work is the
average of the Ksw obtained from 10 simulations of the soil water bal-
ance considering a maximum root depth of 100 cm in the American
study area (Allen et al., 1998) and 60 cm in the Spanish study area, due
to the limitations in soil depth. The range of available water considered
in the simulations varies from 100 to 150 mm m−1. The temporal
evolution of Kst was estimated following the logistic function and the
extremes for the biomass production (0 and 13 °C) as described by Raes
et al. (2011). The NNI was computed as the difference between Nact and

the critical nitrogen concentration (Nc) (Angus and Moncur, 1985;
Greenwood et al., 1986). The values of Nc and were derived from the
critical dilution curves proposed by Justes et al. (1997) for wheat.

2.5. Study sites and ground measurements: total aboveground biomass, ETo
and PAR data

The field data analyzed in this work was divided into calibration
and validation datasets. The calibration dataset was obtained in three
fields located in Albacete (South-East of Spain). These fields (Field 1, 2
and 3) were monitored in 2015 and 2016 during the spring wheat
growing cycle, from January to July. The validation dataset was com-
prised of three fields (fields 4, 5 and 6). Fields 4 and 5 was located in
Albacete and was monitored in 2015 during the spring wheat growing
cycle. Field 6 is located in Ponca City, OK (north-central Oklahoma,
USA) and was monitored during the winter wheat growing cycles in
1998–1999 and 1999–2000 (AmeriFlux site designation: US-Pon). The
coordinates of each field are presented in Table 1. The climatology in
the Spanish study area is Mediterranean. The mean annual precipitation
for the last thirty years was 340 mm and the mean annual temperature
was 13.6 °C for the same period. The climate in Ponca City is Con-
tinental sub-humid, the mean annual temperature for years 1961–1990
was 15.03 °C with a range of −3.7–33.9 °C. The annual average pre-
cipitation for the same period was 835 mm.

Fields 1–5 are commercial fields planted with spring wheat varieties
and irrigated with center pivot systems. Field 1 and Field 4 are man-
aged under minimum tillage and direct seeding. Fields 2, 3 and 5 were
managed following traditional tillage and showing practices and the
management of the Field 5 included the incorporation of the rest of the
previous crop (corn). The irrigation timing varies from weekly events at
the beginning of the season in January to daily applications during
May. Fertilizer was applied in split portions at different growth stages.
Irrigation and fertilization totals and the number of applications for
every field are presented in Table 1. Field 6 is a rained commercial field
and was managed following the traditional tillage/fertilizing practices
in this region. Even though the field was under rainfed conditions, crop
water availability was adequate during most of the growing cycle
(Burba and Verma 2005).

The samples of aboveground biomass were collected at 6–9 mea-
surement locations per field at a minimum of 5 dates during the
growing cycle in the fields 1–5. Each sample is composed by 3 sub-
samples where the aboveground biomass present in 2 rows along 1.5 m
was collected manually and dried for 48 h at 60 °C. The same samples
were used to determine the nitrogen concentration (%) at the plant
level (Nact). Each of the measurement locations is in a homogeneous
zone with a minimum area of 1 ha (see Fig. 2). The homogeneous areas
were delimited based on the cumulated values of NDVI interpolated at
daily scale during two to three previous campaigns (Campos et al.,
2014). This method assumes that the presence or areas with differential
crop development during two or more growing seasons denotes dif-
ferences in the soil structure and similar differences can be expected
during the current growing season. The samples of aboveground bio-
mass in the field 6 were collected at four locations, with 0.5 m of a row
sampled in each area. Experimental measurements of N content were

Table 1
Coordinates, irrigation and fertilization doses in the calibration and validation sites.

Fied ID Year monitored Managemet Variety Irrigation mm Fertilization, Kg (N, P, K) Yield (t/ha) Coordinates

1 2015 Irrigated, direct seeding Califa 452 (257, 81; 65) 5 doses 9.22 39.25° N, 1.99° W
2 2016 Irrigated, conventional Califa 580 (294, 129; 55) 5 doses 9.41 39.13° N, 2.91° W
3 2016 Irrigated, conventional Califa 461 (349, 132; 165), 6 doses 10.10 38.89° N, 1.87° W
4 2015 Irrigated, direct seeding Galera 230 (140, 79; 0), 3 doses 3.84 39.08° N, 1.66° W
5 2015 Irrigated, conventional Califa 447 (268, 120; 150), 6 doses 7.06 38.87° N, 1.84° W
6 98–99 Rainfed, conventional AsegCo 2174 – (88; 26; 0), 1 dose NA 36.77° N, 97.15° W
6 99–00 Rainfed, conventional AsegCo 2174 – (88; 26; 0), 1 dose NA 36.77° N, 97.15° W
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not available for the field 6 (Fig. 2).
Considering the objectives of this analysis, the validation and cali-

bration datasets were in sharp contrast with respect to location, vari-
eties, stresses, management practices and climate. No nitrogen or water
deficit was detected in the field 1, 2 and 3 while the field 4 and 5 were
under water and/or nitrogen deficits as presented in the results section.
Field 6 was winter wheat planted in a different climatic conditions, and
these factors guarantee the differences in those variable related with the
meteorological conditions during the growing cycle.

Meteorological data used in this study include maximum and
minimum daily temperature, incoming solar radiation (Rs), maximum
and minimum daily relative humidity and wind speed. These data were
used to compute a) the daily reference evapotranspiration (ETo) fol-
lowing the FAO-56 formulation for grass reference (Allen et al., 1998),
b) growing degree days (GDD) with base temperature of 0 °C and a
maximum temperature of 25 °C (McMaster and Smika, 1988), c) daily
incident photosynthetically active radiation (PAR) as the half part of Rs

(Campbell and Norman, 1998). These data were downloaded from the
meteorological services SIAR (Servicio Integral de Asesoramiento al
Regante, http://crea.uclm.es/siar/) in Spain and Oklahoma MESONET
(Oklahoma MESOscale NETwork, https://www.mesonet.org/) in USA.
The nearby stations to the study field were selected (station La Gineta in
Spain and Blackwell in USA).

2.6. Remote sensing data

The analyses of the experimental data performed in this work,
length of the growing cycle and biophysical parameters, were based on
NDVI data derived from satellite images. The reflectance data used to
compute the NDVI were obtained from Landsat 8 and 7 in the fields 1 to
field 5 during the years 2015–2016. The reflectance data analyzed for
the field 6 were obtained from Landsat 5 and Landsat 7 images, the
images acquisition dates are presented in Table 2. Unfortunately no
images were available for the field 6 at the beginning of the growing
season. Thus, an initial value of NDVI equal to 0.18 was assumed on
November 15th 1998, based on the temporal evolution of the LAI data

and the NDVI values for bare soil in the study area. The satellite images
are atmospherically corrected. Considering the possible difference be-
tween the maximum NDVI derived from Landsat 8 and Landsat 7 with
respect to Landsat 5, we applied a normalization procedure based on
pseudo-invariant surfaces (dense vegetation like alfalfa and agricultural
bare soils) and every image were rescaled to the NDVI range obtained
for Landsat 5.

The Landsat collection terrain corrected product (Level-1 TP) pro-
vides a geometric precision greater than 0.5 pixels (12 m) for the 90%
of the analyzed area. The method selected for the compensation of the
atmospheric distortion was based on the selection of pseudo-invariant
surfaces (dense vegetation and agricultural bare soil) following the
methodology described by Chen et al. (2005). The data obtained in this
work was based exclusively in Landsat images (Landsat 5, 7 and 8)
because of the availability of operations medium resolution sensors
during the analyzed periods. The study fields was monitored during the
years 1998–2000 and 2015, with low availability of operational sa-
tellite. During the last analyzed campaign, the images available was
Landsat 7 and 8 in addition to the recent Sentinel 2-A. The time series
derived exclusively from Landsat constellation was sufficient to de-
scribe the temporal evolution of the analyzed fields.

The temporal evolutions of the needed parameters (fPAR or Kt)
were estimated for 3 by 3 pixels (90 by 90 m) centered in the mea-
surement locations. The analyses performed in this work, the correla-
tion versus the measured biomass and the evaluation of the model
precision, are based on the average value. In addition, the variability in
each measurement location was analyzed in terms of the standard de-
viation (SD) of the accumulated value of the NDVI during the growing
cycle in each group of 9 pixels.

3. Results

3.1. Field data analysis: crop development and meteorological conditions

3.1.1. Calibration dataset
The temporal evolution of the NDVI describe similar and typical

Fig. 2. Example of the homogeneous areas, measurement locations and
pixel size (30 m) in the field 1.
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pattern for every field in the calibration dataset, with a rapid growth
after the emergence (January-February) followed by a plateau during
4–8 weeks. The senescence was also fast coinciding around the begin-
ning of June for every analyzed field and the differences in planting
dates also impose differences in the senescence. The lengths of the
growing cycles measured in days, GDD and accumulated ETo are pre-
sented in Table 3. Although all three fields are subjected to similar
climatological conditions, the inter-annual variations and the differ-
ences in the length of the growing cycle result in notable differences in
terms of accumulated ETo during the cycle. The maximum NDVI values
were registered in the middle of the plateau, being the maximum values

around 0.85 for the fields 1 and around 0.9 for the fields 2 and 3, see
Fig. 3. Every field reached the maximum biomass production right
before harvest and the minimum biomass before harvest was measured
in the field 1, see Fig. 3. The slope of the biomass production changes
during the crop development and was maximum around the middle of
the cycle. A declining tendency appears at the final of the growing cycle
coinciding with ripening and maturity stages. This effect has been
previously described (Dohleman and Long, 2009) and these authors
point to the reduction in plant assimilation because of leaf aging in
contrast with the relative high levels of plant respiration.

The analysis of the water stress, see Fig. 3, indicate low levels of
water stress in the field 1 and no water stress conditions in the fields 2
and 3. The cold temperature stress was only evident during February
and the beginning of March and, in general, these stresses only affected
the beginning of the growing cycle. The measurements of NNI indicate
that only fields 1 were slightly affected by nitrogen deficit in some
measurement locations with minimum NNI values over 0.7. The sub-
sequent applications of fertilizer promote the nitrogen concentration in
the plant to comfort levels. The three measurement locations with
minimum NNI values lower than 0.9 from the second measurement date
were removed from the calibration of the models efficiencies. From the
analysis of the stress coefficients estimated for the fields 1, 2 and 3 and

Table 2
Acquisition dates of the images and field measurements of canopy reflectance used in the study.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 98–99 Field 6 99-00

Jan. 5, 2015 Jan. 8, 2016 Jan. 8, 2016 Jan. 5, 2015 Jan. 5, 2015 Jan. 4, 1999 Oct. 27, 1999
Jan. 14, 2015 Jan. 17, 2016 Jan. 17, 2016 Jan. 14, 2015 Jan. 14, 2015 Jan. 20, 1999 Nov. 12, 1999
Mar. 10, 2015 Jan. 24, 2016 Jan. 24, 2016 Mar. 10, 2015 Jan. 30, 2015 Mar. 9, 1999 Nov. 20, 1999
Apr. 3, 2015 Feb. 2, 2016 Feb. 2, 2016 Apr. 3, 2015 Mar. 10, 2015 May. 12, 1999 Nov. 28, 1999
Apr. 12, 2015 Mar. 5, 2016 Mar. 5, 2016 Apr. 20, 2015 Apr. 3, 2015 May. 28, 1999 Dec. 6, 1999
Apr. 20, 2015 Mar. 12, 2016 Mar. 12, 2016 May 6, 2015 Apr. 12, 2015 Jul. 15, 1999 Dec. 30, 1999
May 6, 2015 Mar. 29, 2016 Apr. 6, 2016 May 21, 2015 May 6, 2015 Jul. 23, 1999 Jan. 7, 2000
May 22, 2015 May 24, 2016 May 24, 2016 May 22, 2015 May 13, 2015 Feb. 8, 2000
Jun. 7, 2015 Jun. 9, 2016 May 31, 2016 May 30, 2015 May 21, 2015 Mar. 27, 2000
Jun. 30, 2015 Jun. 16, 2016 Jun. 9, 2016 Jun. 7, 2015 May 22, 2015 Apr. 4, 2000
Jul. 9, 2015 Jul. 2, 2016 Jun. 13, 2016 Jun. 22, 2015 May 30, 2015 May 30, 2000
Jul. 16, 2015 Jun. 25, 2016 Jun. 30, 2015 Jun. 7, 2015 Jun. 7, 2000

Jul. 2, 2016 Jul. 9, 2015 Jun. 22, 2015 Jun. 15, 2000
Jul. 11, 2016 Jul. 16, 2015 Jun. 23, 2015 Jun. 23, 2000

Jun. 30, 2015 Jul. 1, 2000
Jul. 9, 2015
Jul. 16, 2015

Table 3
Length of the growing cycles estimated from green-up to maturity.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
98–99

Field 6
99-00

Days 168 175 142 115 110 223 205
GDD, °C 1993 2047 1805 1490 1576 2360 2160
Mean Tª,

°C
11.9 11.7 12.7 13.2 14.3 11.3 16.9

ETo, mm 606 602 558 453 470 620 560

Fig. 3. The upper graphs represent the temporal evolution on the measured NDVI (white circles) and biomass data (grey diamonds) for the calibration datasets for the field 1 (a), field 2
(b) and field 3 (c). The lower graphs represent the temporal evolution of the water stress, (Ksw solid black line), the temperature stress (Kst grey solid line) and the Nitrogen Nutrition
Index, (NNI white squares), for the field 1 (d), field 2 (e) and field 3 (f).
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the high values of grain yield obtained (see Table 1) we concluded that
these fields are in optimum conditions, as needed for the calibration of
the efficiency parameters of the models analyzed in this work.

The analysis of the variability indicates that the measurement lo-
cations were very homogeneous in the calibration dataset. The SD es-
timated for the accumulated value of NDVI was lower than the 3% of
the mean values in each measurement location. The greater differences
was obtained in one measurement locations in the field 3 (SD=2.26,
equivalent to the 2.45% of the mean value). The most homogeneous
measurement locations correspond to the field 2, the greatest differ-
ences obtained in any location was lower than the 2% of the average
value in this field.

3.1.2. Validation dataset
The canopy growth described by the NDVI values in the fields 4 and

5 was similar to those evolutions described for the calibration dataset,
see Fig. 4, but the temporal evolution of the NDVI was slightly different
for the field 6, Fig. 5. The field 6 was planted with winter wheat and
thus the sowing dates correspond to the previous fall in both analyzed
seasons. From the emergence, estimated in late-October, the NDVI va-
lues show a rapid growth period followed by a period with a relative
stability, or even a decrease trend. This period coincides with the
minimum air temperatures registered during the season. From De-
cember to January the mean temperature was −1.4 °C and 3.1 °C
during the first and second seasons analyzed. After this period, the
NDVI restarts the increasing trend up to the beginning of the senescence
in May. The NDVI values were around 0.5 during the standing period in
both analyzed campaigns in the field 6 and the maximum NDVI values
(around 0.7) were registered before the beginning of the senescence,
see Fig. 5. The lengths of the growing cycles measured in days, GDD and
accumulated ETo are presented in Table 1.

The analysis of the soil water balance only indicates moderate levels
of water stress in the field 4 and in the field 6 during the 1999–2000
growing season, see Figs. 4 and 5. The water availability for the field 5
and the rainfed wheat growth in the field 6 during the season
1998–1999 was adequate, see Figs. 4 and 5. The cold temperature stress
was evident in field 6 during the winter and it limits the normal crop
development up to the beginning of April, coinciding with a sudden
increase in the slope of the biomass production data, see Fig. 5. No cold
temperature stress was observed in fields 4 and 5 during the growing

cycle.
The NNI measured for the field 4 was lower than 0.8 during the

whole cycle except in 3 measurement locations. The NNI measured in
the field 5 was lower than 0.8 during most of the growing cycle and
only reached greater values in the last measurement date. The absolute
values and the general trend described by the NNI point to the possible
effects of nitrogen deficit in the analyzed fields (Justes et al., 1997). The
deficit in water and/or nitrogen registered in these fields reduced the
crop production in terms of biomass (Fig. 5) and final yield (see
Table 1).

The analysis of the variability indicates that the measurement lo-
cations were less homogeneous in the fields 4 and 5 in comparison with
the calibration dataset. The SD of the accumulated NDVI for each pixel
varies between the 5 and the 6% of the average value for some locations
in the field 4. The SD estimated for any measurement location was
lower than the 5% of the mean values in the field 5.

3.2. Calibration of the WP*, WUE and LUE approaches

For the empirical determination of the LUE, WUE and WP* we
correlated the values of measured biomass and the cumulated values of
the target variable for each methodology (IPAR, Tc,adj, Kt,adj*Kst) ob-
tained in the calibration datasets (Fig. 6). The correlation presents a
strong linear relationship for every analyzed variable (Table 4). The
slopes of the relationships correspond to the empirical values of LUE,
WUE and WP* respectively although the values of the interception for
the linear regression equations were statistically different from 0 for
every model (Table 4). Instead of the possible impact of the intercep-
tions, the linear approaches describe with reasonable precision the re-
lationship between biomass and the used variables for the whole range
of the calibration dataset, even forcing the relationships through the
origin. The values of LUE, WUE and WP* obtained forcing the re-
lationships through the origin were 1.77 ± 0.02 g MJ−1,
4.40 ± 0.05 g l−1 17.9 ± 0.2 g m−1, and the R2 values were greater
than 0.98 for every relationship.

The results obtained for the calibration dataset reveal the capacity
of the proposed approach to estimate biomass production for spring
wheat in the study area. Nevertheless, it is fair to say that the metho-
dology proposed and the values of LUE, WUE and WP* must be re-
garded as empirical values, potentially affected by local conditions, i.e.

Fig. 4. The upper graphs represent the temporal
evolution on the measured NDVI (white circles) and
biomass data (grey diamonds) for the field 4 (a) and
the field 5 (b) (validation dataset). The lower graphs
represent the temporal evolution of the water stress,
(Ksw solid black line), the temperature stress (Kst grey
solid line) and the Nitrogen Nutrition Index, (NNI
white squares) for the field 4 (c) and the field 5 (d).
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climate, and other stresses not considered in the analysis. Previous re-
search indicates the factors affecting the empirical values of LUE, WUE
and WP* are related with the crop management, mainly water or ni-
trogen deficits, and the meteorological conditions such as temperature
stress and atmospheric demand. These effects were analyzed through
the estimation of the biomass production in the validation dataset.

3.3. Models validation

The relationships obtained in this work were applied to the vali-
dation dataset with the aim of providing an empirical validation and
assuring the reproducibility, and representability of the proposed ap-
proaches. In addition, the characteristics of the validation datasets
allow to analyze the proposed approach under nitrogen deficit and in
two very different climatic conditions (Semiarid Mediterranean and
Continental Sub-humid climates). The methodologies were applied to
the validations dataset obtained in the fields 4 and 5, subjected to water
and nitrogen deficits, and in the field 6 during two consecutive cam-
paigns. The scatter grams of the biomass production measured and si-
mulated by the three approaches indicate a reasonable agreement for
every analyzed model, showed in Fig. 7. The best fitting (minimum root
mean square error, RMSE, and maximum value of the index of agree-
ment, d) was found for the model based on the product Kt,adj*Kst

followed by the model based on Tc,adj and the poorest performance was
obtained for the model based on IPAR (see Table 5). The greater dis-
crepancies were found at the beginning of the growing cycle, when the
measured biomass was lower than 500 g/m2 for the field 6 and during
the ripening physiological stages. While the differences founded at
maturity stages did not present a clear pattern, the differences founded
for the lower values clearly indicated an overestimation of the models
based in IPAR and Tc,adj. These results are extensively analyzed in the
discussion section.

Fig. 5. The upper graphs represent the temporal
evolution on the measured NDVI (white circles) and
biomass data (white diamonds) for the field 6 (vali-
dation dataset) during both analyzed campaigns. The
lower graphs represent the temporal evolution of the
water stress, (Ksw solid black line) and the tempera-
ture stress (Kst grey solid line).

Fig. 6. Correlation between measured biomass and a) the values of accumulated radiation intercepted (IPAR), b) accumulated crop transpiration accounting for water stress (Tc,adj) and c)
the accumulated value of the product of transpiration coefficient accounting for water stress (Kt,adj) multiplied by the temperature stress coefficient (Kst). The dotted line represents the
relationships obtained in the model calibration and the solid line represents the range of the efficiencies obtained in the literature review.

Table 4
Results of the linear regression correlating the biomass measured in the field and the
values of accumulated radiation intercepted (IPAR), accumulated basal crop coefficient
(Kt,adj) multiplied by the temperature stress coefficient (Kst) and the accumulated product
crop transpiration (Tc). The analysis was performed for the whole calibration dataset.

Model Efficiency Slope (units) Interception (units) R2

IPAR LUE 1.88 ± 0.03 (g MJ−1) -88.87 ± 18.48 (g m−2) 0.98
Tc,adj WUE 4.52 ± 0.09 (g l−1) -38.99 ± 24.85 (g m−2) 0.96
Kt,adj*Kst WP* 20.2 ± 0.3 (g m−2) -187.1 ± 22.8 (g m−2) 0.97
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4. Discussion

4.1. Comparison of the proposed approach and previous developments

The values of the efficiencies obtained in this work were compared
with the range of relationships reported in the literature. Only those
values obtained for the whole growing cycle and wheat crop managed
under non-limiting conditions were considered. Although the literature
is scarce in empirical values of WP* for wheat, we found a great col-
lection of empirical values of LUE and WUE for this crop, see Table 6.

Our empirical relationship between biomass and the accumulated value
of IPAR and the accumulated value of Tc,adj coincides with the corre-
sponding mean values of LUE or WUE obtained in the literature review,
while the empirical relationship between biomass and the product of
Kt,adj times Kst agree with the higher range of the relationships com-
piled. The experimental values of the efficiencies founded in this study
(LUE, WUE and WP*) were therefore of the right order (correctly ad-
justed from the calibration dataset). However, it should be noted that
the values of LUE obtained for several experiments are not strictly
comparable since LUE can be calculated on the basis of absorbed or
intercepted radiation, resulting in a difference of about the 5% of the
PAR absorption and the consequent propagation of this difference into
the LUE values (Gallo and Daughtry, 1986).

The general precision obtained in this work was within the range of
other approaches for biomass assessment evaluated in the most recent
applications revised. Simulating wheat biomass, Iqbal et al. (2014)
obtained a RMSE equal to 87 g/m2 with the Aquacrop model in ex-
perimental plots (5 m × 10 m). Jin et al. (2017a,b) obtained a RMSE
over 153 g/m2 simulating biomass at regional scale (40 samples) using
the AQUACROP model calibrated for the area and assimilating remote
sensing data (optical and radar). Using the same model calibrated for
the study area, Jin et al. (2014) obtained a RMSE equal to 129 g/m2

simulating the same variable. In view of the results, it is fair to say that
the proposed approach does not increase the precision of previous ap-
proaches. However, the proposed approaches suppose an operation
advantage over crop growth models for the assessment of biomass
production at field scale. These advantages can be summarized as
follow.

The RS data is a diagnostic of the actual crop development, re-
flecting the effect of multiple factors that are difficult to consider in the
models (i.e. pests and diseases) or are generally unknown working in
great areas (i.e. planting dates, varieties, density and emergence rates).
On the other hand, RS techniques allow for a quantitative and direct
estimation of the core variables related with biomass production,
namely fPAR or Kt. A common criticism is that RS techniques are
subjected to a high degree of empiricism, and the algorithms can be
considered valid for a limited number of crops. But it is fair to say that
any estimation of biomass production based on the simulation of crop
development requires, at least, two steps that have been validated for a
narrow number of crops and contains a similar degree of empiricism as
presented in the introductory section. In addition, the proposed ap-
proach based on RS data could be useful for the operational assessment
of in-field heterogeneity considering the availability of satellite plat-
forms with spatial resolution up to 10 m, although this capability must
be analyzed in future works.

The main limitation of the approach proposed is the predictive role
recognized to the crop growth models. Nevertheless, the methodology,
algorithms and calibration values obtained in this work can be used to
evaluate the performance of these models under different climatic
conditions and data availability. In addition, it should be noted that the
direct integration of the temporal evolution of the needed variables,
into the crop growth models compounds a deterministic approach for
which the errors in the estimation of the needed variables are

Fig. 7. Comparison of biomass measured in the field and the biomass modeled following
the approaches presented in the text: a) accumulated radiation intercepted (IPAR) mul-
tiplied by the water stress coefficient, b) accumulated adjusted crop transpiration (Tc,adj)
and c) accumulated adjusted transpiration coefficient (Kt,adj) multiplied by the tem-
perature stress coefficient (Kst).

Table 5
Resume of the statistics obtained in the validation of the models based on the intercepted PAR (IPAR), the crop transpiration accounting for water stress (Tc,adj) and the product of the crop
coefficient accounting for water stress (Kt,adj) by the temperature stress coefficient (Kst). The statistics used are the root mean square error (RMSE), the index of agreement (d) and the P-
value derived from the two paired samples T-test.

LUE model WUE model WP* model

RMSE (g m−2) d (Wilmot) P (T-test) RMSE (g m−2) d (Wilmot) P (T-test) RMSE (g m−2) d (Wilmot) P (T-test)

Field 4 203 0.922 0.060 195 0.942 0.270 141 0.964 0.949
Field 5 139 0.978 0.404 251 0.940 0.060 126 0.980 0.466
Field 6 (98–99) 156 0.976 0.793 196 0.972 0.513 158 0.982 0.641
Field 6 (99-00) 218 0.951 0.488 208 0.956 0.489 107 0.990 0.793
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undoubtedly translated to the model result. This circumstance increases
the uncertainty in the determination of the desired variables, and fur-
ther analysis considering the possible use of assimilation processes are
desirable.

4.2. Comparison of the models based on LUE, WUE and WP*

The three approaches were able to reproduce the behavior of the
biomass production in the analyzed dataset. The p value for the two
samples paired T-test indicate that the mean values were nor statisti-
cally different at the 0.05 level (see Table 5). However, the models
based on water use were demonstrated more precise in the analyzed
environments, being the average RMSE lower for the estimates based on
these models (see Table 5). Specifically, the model based on WP* pro-
vides the most precise estimation with lower RMSE and higher values of
d (see Table 5). In contrast, the correlation between the analyzed
variables (APAR, Tc,adj and Kt,adj*Kst) indicate the opposite trend. The
higher correlation coefficient was obtained for the linear regression
between biomass and APAR while the regressions between biomass and
Tc,adj or Kt,adj*Kst yield lower values for the r2 (see Table 4). It should be
noted that the calibration dataset was obtained under similar meteor-
ological conditions, in the same area although in different growing
seasons, and these fields were well managed (no severe stresses). In
contrast, the validation dataset was obtained for a wide range of cli-
matic conditions, including frozen periods (Field 6) and some periods of
water stress (Field 4). We interpret that the model based on LUE trend
to overestimate the biomass production in the Field 4 because the ef-
fects of water stress are not considered in this approach (see Fig. 7). The
results also indicate that the normalization of the atmospheric condi-
tions in the WP* model could provide a relative advantage with respect
to the WUE model as discussed below.

The analysis provided excluded water and nutrient stresses as the
main source of variability for some fields. Under these conditions, WUE
and LUE models are equivalent and provided similar performance. We
consider that this relative good agreement for both models is a novel
result and suggests interesting perspectives. The accumulation of bio-
mass increases under conditions of elevated incoming radiation at-
tending to the LUE model, while the accumulation of biomass will be
higher in the climates with high atmospheric demand attending to the
WUE model. Apparently, both models will diverge when the balance
between incoming radiation (PAR) and ETo changes with respect to the
climatic conditions analyzed in this study although the extent of this
divergence should be analyzed in future works. Further research will be
needed to determine the effect of this balance on biomass accumula-
tion, in absence of other abiotic stresses or saturation effects. In parti-
cular the analysis of the plasticity of different varieties and the devel-
opment of indicators of wheat productivity based in the noted balance
should be considered.

4.3. Effect of the stresses considered in the models

The effect of water stress in biomass production was not extensively
analyzed in this work, because the water deficit was not evident for any
field during the entire growing season. However, the poor performance
of the LUE model in some of the fields used for validation (Field 4) can
be attributed to the effect of the water stress reducing the biomass
production over the potential simulated by the model. This circum-
stance must be analyze in future works and based in more complete
datasets, including rainfed fields in semiarid conditions. According with
the proposed approach, the effects of water stress can be included by
estimating the water stress coefficients. It requires the simulation of the
soil water balance or alternative approaches to water stress. Most of the
information required for the estimation of water stress is not generally
available for great areas, i.e. soil depth, irrigation timing and amounts.
However, and even under these conditions (water stressed crops with
few information available) the proposed methodology could be inter-
esting. The time integral of Tc, APAR and Kt obtained from reflectance
based VIs and meteorological data, appears to be a valuable tool, pro-
viding a quantitative indication of potential biomass accumulation and
could be used for the assessment of the spatial variability at field scale
(Campos et al., 2017a). The effect of the water stress will reduce the
actual biomass production, but the extent of this reduction should be
analyzed in future works.

While the model based on WP* provides the most precise estima-
tion, the improvement endorsed to WP* was not evident in the vali-
dation dataset. The main criticism to the WUE approaches is the de-
pendence of this variable with respect to the atmospheric demand. The
normalization of WUE for the climatic conditions in terms of VPD or
alternatively ETo was discussed in-depth by Steduto and Albrizio
(2005) and Steduto et al. (2007) and summarized by Perry et al. (2009).
These authors noted that while the water productivity of a plant is
essentially linear for a given situation, the slope of that relationship
varies from one place to another and between different seasons, but
WUE is extremely stable for a given evaporative demand. So far, the
variability of WUE observed between different varieties of the same
species is around 10% when WUE is normalized for climatic conditions,
equivalent to the concept of WP*. Our results indicate that both ap-
proaches, WP* and WUE could be considered equivalent in the noted
conditions, for a wide range of climatic data, with a variety of ETo
(from 390 to 620 mm of ETo registered during the growing season).
Even considering that the statistics indicate a reasonable agreement, the
precision of the LUE/WUE model could be improved during the initial
phases of crop development, being these effects more evident in the
field 6. The noted overestimation can be endorsed to the effects of cold
stress, reducing, or even bringing to a standstill, the biomass produc-
tion. This effect is crop dependent but can be simulated by the cold
stress based on growing degree days used in this study, Kst.

The biomass production in the locations affected by nitrogen deficit
did not differ significantly from the models estimates on these points. In
particular, the precision of the models in the field 5, under nitrogen

Table 6
Empirical values of LUE, WP* and WUE founded in the literature review.

Reference LUE, g MJ−1 Reference WUE, g l−1 Reference WP*, g m−2

Gallagher and Biscoe (1978) 2.2 French and Schultz (1984) 3.7 Steduto and Albrizio (2005) 13.4
Green (1987) 2.0 Siddique et al. (1990) 5.0 Raes et al. (2011) C3 species 15.0–20.0
Garcia et al. (1988) 3.13 Gregory et al. (1992) 3.0 Mkhabela and Bullock (2012) 14.0
Gregory et al. (1992) 1.74 Steduto and Albrizio (2005) 4.5 Iqbal et al. (2014) 15.0
Fischer (1993) 2.58 Sadras and Angus (2006) 4.4
Calderini et al. (1997) 2.2 Pradhan et al. (2014) 3.2
Latiri-souki et al. (1998) 2.1
Lobell et al. (2003) 2.19
Albrizio and Steduto (2005) 1.7
Padilla et al. (2012) 2.5
Pradhan et al. (2014) 2.49
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deficit, was comparable to the precision of the models in other fields.
These conclusions are in the line of the relative stability of LUE under
nitrogen deficit conditions described by Garcia et al. (1988). These
authors demonstrated experimentally that the nitrogen deficit affects
mainly the canopy development and thus the ability of the canopy to
intercept PAR but the efficiency of the conversion is similar under
different applications of nitrogen. Thus, the impact of nitrogen deficit
can be considered similar to the water stress, reducing canopy devel-
opment (Hsiao et al., 2007) and this reduction can be reflected by the
spectral measurements. These conclusions are in apparent opposition
with other results founded in the literature (Latiri-souki et al., 1998;
Lobell et al., 2003; Pradhan et al., 2014). This apparent incongruence is
indicating that while the effect of nitrogen deficit reducing the noted
efficiencies must be considered, but this effect is unappreciable for the
nitrogen contents reported in this study with a range of NNI from 0.6 to
greater than 1. The range of NNI obtained in this study is narrower than
the ranges obtained in experimental conditions, in which the treatments
can be designed to induce high levels of nitrogen deficit. However, the
nitrogen concentrations obtained in this study correspond to the deficit
levels that can be expected in commercial farms.

4.4. Effects of the satellite time resolution and future improvements

As demonstrated in the literature review, the relationship between
NDVI, or alternative multispectral vegetation indices, is a simple and
validated method for the estimation of the biophysical parameters used
in this work (fPAR and Kt). In addition these simple relationships per-
mits the use of multiple platforms, including the Landsat constellation,
as presented in this work, and high resolution images as is the case of
Sentinel 2-A and Sentinel 2-B. The compatibility between the images
provided by these sensors in terms of surface reflectance and NDVI is
analyzed in a recent research (Flood, 2017) and the use of all the
available platforms in virtual constellations (Martinez-Beltran et al.,
2009) provides an unnoticed temporal resolution using exclusively free
and open access images. A preliminary study combining both satellite
platforms for the analysis of the spatial variability in biomass produc-
tion was presented by Campos et al. (2017a).

While additional images sources can be considered, and the com-
bination of multiple platforms is desirable in future works, the time
series analyzed in this study were considered enough to describe the
evolution of the crop growth using exclusively Landsat images. Within
the field campaigns analyzed in this work, the field 6 contains the lower
number of images (6 images) due to the scarcity of operational plat-
forms during the years 1998–1999. Nevertheless, the images analyzed
are well distributed along the growing season and the inflexion points
of the growing curve is well reproduced by the temporal evolution of
the NDVI. The precision of the model evaluation quantify as RMSE for
the field 6 is within the range obtained for other fields, see Table 5. We
want to highly that the number of images must be enough to describe
the inflexion points of the growing curve, rather than recommending
the minimum number of images necessary for the application of the
proposed approach. The evolution of the crop can be assumed linear
during the intermediate periods but the availability of images during
these periods could also promote the precision of this approach.

5. Conclusions and REMARKS

The analyzed approaches based on the direct estimation of biomass
accumulation using RS data, provide good agreement with experi-
mental results for wheat crops grown under very different climatic
conditions (Semiarid Mediterranean and Continental Sub-humid cli-
mates) and management conditions in commercial fields. The time
series of NDVI based on Landsat images describe the crop growth and
enable us to estimate the needed parameters, crop transpiration and
PAR interception, jointly with meteorological data. The correlation
between measured biomass and the key parameter used in each

approach exhibits a strong linear correlation for the whole range of
calibration data. The slope and bias of these relationships show good
agreement with values quantified in other studies.

The basis for all models are well established and the aptitudes have
been demonstrated for winter and spring wheat under a variety of cli-
matic conditions. Different conclusions can be obtained for the same
crop growing in very extreme climatic conditions or different crops
growing in different seasons as is the case of winter and spring crops
versus summer crops. In addition, the stability of these results under
middle/moderate stress, either temperature and nitrogen origin, seems
to support the proposed methodology to estimate biomass accumula-
tion. The reasons behind this behavior could be the capability of the RS
data (NDVI values) to reflect the effect of the noted stresses reducing
the canopy development. Nevertheless, further research will be needed
to establish the limits of these approaches under severe stress condi-
tions that lead to closing stoma. Hence, time integral, that is the area
under the curve of T, APAR or Kt estimated using the satellite re-
flectance based VIs and meteorological data, is a valuable tool for
biomass monitoring in absence of stresses or under low levels of ni-
trogen deficit. These simple approaches provide a quantitative indica-
tion of potential biomass accumulation because the noted stresses only
could decrease the accumulation rate.

Finally, the results obtained in this work opens the possibility for
further interesting applications as is the characterization of field
homogeneity and further advances for the estimation of crop yield
based on RS data, considering that the potential harvestable yield de-
termined from RS data described the upper limit of yield assuming non-
limiting conditions for the remainder of the growth cycle. Other in-
teresting applications will be the combination of the proposed metho-
dology for biomass estimation and the use of RS methods to estimate
nitrogen concentration.
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