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Abstract
This paper explored the ability of remote sensing (RS) and meteorological data to map 
the variability of yield/biomass in cultivated wheat (Triticum aestivum). The methodology 
integrated a time series of RS-based vegetation indices (VI) into a simple model based 
on the water productivity. Thus, the study analyzed if the biophysical parameters deduced 
from the VI could be used for the quantification of the differences in crop growth and yield 
assuming that in operative scenarios, the spatial distribution of the factors limiting the 
crop growth is unknown. The results of the model were analyzed in terms of the absolute 
values and the within-field variability with respect to space-continuous measurements of 
yield and biomass data. The variability registered in the fields was quantified as the ratio 
between actual yield or biomass in any given location and the mean value for the analyzed 
variable in each field. The good correlation between measured and modelled variability 
demonstrated the potential of the proposed approach to reproduce variability even under 
stress conditions. The proposed approach defined differences in crop growth similar to the 
ground measurements. The additional evidence obtained point to the necessity of consider-
ing the individual time-trajectory of each pixel for the assessment of within field variabil-
ity. This approach requires the identification of the beginning and the end of the growing 
cycle. The proposed methodology, based on thresholds of VI offered promising results.
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Introduction

Precision farming emerged as an innovation driven solution (Dixon and McCann 1997) for 
the improvement of resource use efficiency in agriculture. Precision farming requires tech-
nology necessary for the distribution of the inputs and knowledge of the spatial distribution 
of crop requirements and their variability. Thus, site-specific maps of crop variability are 
necessary as an indicator of the response of the crops to certain factors (Arslan and Colvin 
2002a). Maps of crop variability over a number of seasons provide site-specific informa-
tion about the permanent factors (mainly climate and soil properties) and management fac-
tors (nutrients supply, pest problems or irrigation uniformity in irrigated lands) that affect 
the productivity. Thus, the application rates of the agronomic inputs (seeding rates, water 
and fertilizers) can be adapted to the actual demand, which is the paradigm of precision 
agriculture.

Possible alternatives for mapping the crop variability are the application of crop growth 
models (CGMs), electrical conductivity maps, the use of combine-mounted yield monitors 
and a family of diagnostic approaches based on remote sensing data (RS). The family of 
methods based on RS for the assessment of crop production includes the assimilation of 
RS-based biophysical parameters in the growth engine of the most common CGMs and 
direct-empirical relationships with the crop yield (Sadras et al. 2015). In the first group of 
methods, the biophysical parameters based on RS are incorporated as forcing variables into 
the CGMs. Some examples can be found in Zwart and Bastiaanssen (2007), Padilla et al. 
(2011) and Sibley et al. (2014). The second group is based on regressions between RS data 
obtained for a representative date and biomass or yield data. Examples of this methodology 
are the work done by Cicek et al. (2010) and Panda et al. (2010).

The regression approaches are mainly oriented to the determination of the average 
yield at the field or regional scales (Lobell and Azzari 2017; Lobell et al. 2015), but some 
authors have proposed the use of empirical relations with RS data for the assessment of 
within-field variability in crop yield and growth. Using this approach, Dang et al. (2011) 
proposed a regression model for the determination of the yield at pixel scale and the deter-
mination of potentially constrained sub-regions of fields that failed consistently to reach 
a specific yield quantile. Dalla Marta et al. (2013) found a positive relationship between 
spectral vegetation indices (VI) and yield related parameters for wheat during the stem 
elongation phases. These relationships indicated the capability of the VI to capture the var-
iability of crop growth and production. Using a calibrated satellite regression model, Burke 
and Lobell (2017) explained between 15 and 40% of the variation in yields at field scale in 
Kenya. In a slightly different approach, Dobermann and Ping (2004) proposed the integra-
tion of VI acquired during the crop growth cycle and yield monitor data to improve the 
accuracy of combine-mounted yield monitors and the delimitation of yield patterns.

The barriers to the use of RS data for these tasks are essentially the same as already 
raised in other applications: resolution (spatial, temporal and radiometric), calibration, 
costs (Moran et al. 1997), the computational load issues when using large datasets and the 
capability to provide information in the appropriate format and time. However, the success 
of RS approaches for the assessment of the vegetation vigor has not been discussed (Dang 
et al. 2011) and according to available literature, the relationship between crop vigor at cer-
tain stages and final yield is positive in most cases. From a different point of view, the main 
weakness of these methods is the representativeness of one or a few images to reproduce 
a dynamic and accumulative process, as is the case of the yield/biomass production. It is 
fair to assume that the differences found in certain stages can be compensated (or at least 
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mitigated), reaching different vigor latterly, or varying the length of the growing season. 
In addition, the selection of the date (development stage) for the assessment of variability 
has an important impact on the capability to determine differences in canopy development. 
Aparicio et al. (2000) demonstrated the poor performance of various vegetation indices for 
explaining the differences in wheat yield if the images were obtained for a leaf area index 
greater than 3. These effects can be overcome if the methods consider the information con-
tained in the temporal evolution of the RS data during the whole crop cycle, rather than 
single dates or short periods.

This work proposed the use of the temporal evolution of the RS data during the whole 
crop cycle for the assessment of crop growth variability at the scale of commercial farms, 
promoting the necessity of continuous monitoring of the crop biophysical parameters for a 
precise estimation of the spatial variability of crop growth. A preliminary version of this 
research was presented in the 11th European Conference of Precision Agriculture (Campos 
et al. 2017a). However, the present work expanded the number of fields analyzed, intro-
duced the analysis of the spatial variability in yield and biomass production as the key vari-
ables and analyzed the aptitude of the model under severe water limited conditions, as is 
the case of rainfed wheat in the study area.

The methodology proposed integrates a time series of VI into the AQUACROP crop 
growth and yield partitioning model (Steduto et  al. 2009) popularized by the FAO-66 
manual (Steduto et al. 2012). This approach was applied to commercial fields planted with 
wheat and managed in irrigated and rainfed conditions. The performance of the proposed 
approach was evaluated in two ways. Initially, the variability estimated by the model was 
evaluated versus the variability based on the yield maps obtained by combine-mounted 
grain yield monitors. The second evaluation was the comparison of the variability esti-
mated by the model versus the variability based on field measurements of aboveground 
biomass in areas with differences in crop growth. Considering that the crop variability can 
be affected by additional stresses not accounted for by the temporal evolution of VIs, the 
ability of the proposed approach to determine the spatial patterns in crop growth was ana-
lyzed in severe water limited conditions, as is the case of the rainfed fields in the study area 
(Southeast Spain).

Materials and methodology

Study sites

The data analyzed in this work were obtained in commercial fields located in the province 
of Albacete (Southeast Spain). The climate in the area is Mediterranean. The mean annual 
precipitation for the last 30 years is 340 mm and the mean annual temperature is 13.6 °C 
for the same period. The fields were managed under irrigation and rainfed conditions. All 
irrigated fields (fields 1–5) used center pivot systems and except for field 3, all monitored 
fields were managed under no-tillage and direct seeding. The growing season went from 
January to July for the irrigated varieties (spring wheat) and from November to June for 
the rainfed varieties (winter wheat). The irrigation timing varied from weekly events at 
the beginning of the season to daily applications during May. In spring irrigated wheats, 
fertilizer was applied in split portions at different stages during crop development, follow-
ing local practices. In rainfed winter wheats, fertilizer was applied in two portions, before 



 Precision Agriculture

1 3

seeding and during tillering. For additional information about the management, inputs and 
yield production see Table 1.

In addition to the natural variability of soil fertility, additional variability was induced 
in the crop growth by varying the N doses proposed by the farmer in selected locations 
for some fields via irrigation pivots during initial growth stages (crop emergence). During 
2015 (fields 1, 3 and 4), the N doses were increased and reduced by 46 kg N ha−1 in two 
strips crossing the monitored fields. During 2016, the N dose in field 2 was reduced by 
100 kg of urea (46 kg N ha−1) in a strip crossing the field. The width of the strips (100 m) 
was sufficient to be monitored with the available images (Landsat 8 and Sentinel 2). As 
presented in the “Results”, the crop response varied depending on the soil properties in 
the areas with homogeneous treatments and the proposed approach was able to detect the 
actual variability under homogeneous managements. The consequences of these treatments 
in the crop productivity and nitrogen use efficiency were not analyzed in this work.

Basis of the model for the estimation of the variability of yield and biomass 
production

Previous studies (Campos et al. 2017b, 2018) proposed that the assessment of biomass and 
yield production is the incorporation of the reflectance-based basal crop coefficient (Neale 
et al. 1989) into the AQUACROP crop growth and yield partitioning model (Steduto et al. 
2009) popularized by the FAO-66 manual (Steduto et  al. 2012). In this work, the same 
principles was applied, using the concept of normalized water productivity proposed in 
AQUACROP and the integration of reflectance-based crop coefficients, for the assessment 
of the within-field variability in crop growth. For simplicity, this methodology was named 
spatial variability based on vegetation indices. According to the FAO-66 methodology, 
biomass is estimated as the product of a normalized water productivity ( WP∗ , in g m−2) 
(Steduto et  al. 2007) times the summation of the ratio between actual crop transpiration 
 (Tca) over the reference evapotranspiration (ETo), (see Eq. 1). The ratio of  Tca over ETo is 
equivalent to the actual transpiration coefficient  (Kta).

The formulation presented in the Eq. 1 only considers the effect of water stress reduc-
ing the crop transpiration (actual transpiration) and the biomass productivity. However, the 
biomass production is dynamic and can change during the growing cycle because of factors 
related to the meteorological conditions and the crop physiology and management. These 
factors can be represented by a variety of stress coefficients. Explicitly, the FAO-66 meth-
odology considers the temperature and fertility stress coefficients,  Kst and  Ksf respectively 
(see Eq. 2). The term  Kta can be estimated as the product of the water stress coefficient 
 (Ksw) times the crop transpiration coefficient  (Kt). The coefficient  Kt is the ratio of crop 
transpiration to atmospheric demand under non-limiting moisture conditions. This is simi-
lar to the basal crop coefficient  (Kcb) defined by Allen et al. (1998) but different because 
 Kcb includes residual soil evaporation and thus exceeds  Kt under partial cover conditions. 
For additional discussion about the convenience of minimum  Kt values equal or greater 
than 0 for the assessment of biomass production, the reader is referred to Campos et al. 
(2017c). The FAO-66 methodology estimates crop yield as a variable proportional of the 
crop biomass (see Eq. 3). The ratio between yield and biomass is the harvest index (HI). In 

(1)Biomass = WP∗
⋅

t
∑

to

Tca

ETo
= WP∗

⋅

t
∑

to

Kta



Precision Agriculture 

1 3

Ta
bl

e 
1 

 S
um

m
ar

y 
of

 th
e 

m
an

ag
em

en
t a

nd
 g

ro
un

d 
da

ta
 a

cq
ui

re
d 

in
 fi

el
ds

 a
na

ly
ze

d 
in

 th
is

 w
or

k

Fi
el

d 
ID

Ye
ar

Lo
ca

tio
n

M
an

ag
em

en
t

Va
rie

ty
Ir

rig
at

io
n 

(m
m

)
Fe

rti
liz

at
io

n,
 k

g 
(N

; P
; K

)
Y

ie
ld

 (t
  h

a−
1 )

H
ar

ve
st 

In
de

x
B

io
m

as
s d

at
a

1
20

15
39

.2
52

1;
 −

 1.
99

83
Ir

rig
at

ed
, d

ire
ct

 se
ed

in
g

C
al

ifa
 su

r
45

2
(2

57
; 8

1;
 6

5)
8.

82
0.

52
9 

pl
ot

s
2

20
16

39
.2

52
8;

 −
 1.

99
03

Ir
rig

at
ed

, d
ire

ct
 se

ed
in

g
C

al
ifa

 su
r

45
3

(2
18

; 1
05

; 3
4)

7.
51

0.
43

8 
pl

ot
s

3
20

15
38

.8
74

3;
 −

 1.
83

73
Ir

rig
at

ed
, c

on
ve

nt
io

na
l

C
al

ifa
 su

r
44

7
(2

68
; 1

20
; 1

50
)

7.
45

0.
49

9 
pl

ot
s

4
20

15
39

.0
79

5;
 −

 1.
65

74
Ir

rig
at

ed
, d

ire
ct

 se
ed

in
g

G
al

er
a

23
0

(1
40

; 7
9;

 0
)

4.
03

0.
41

9 
pl

ot
s

5
20

16
39

.0
63

2;
 −

 16
75

2
Ir

rig
at

ed
, d

ire
ct

 se
ed

in
g

G
al

er
a

24
0

(1
1;

 0
; 0

)
5.

03
0.

38
6 

pl
ot

s
6

20
16

39
.2

79
3;

 −
 1.

97
50

R
ai

nf
ed

, d
ire

ct
 se

ed
in

g
Pr

22
–P

r2
3

–
(8

0;
 5

1;
 0

)
3.

12
0.

35
N

o 
da

ta
7

20
16

39
.2

80
8;

 −
 1.

97
78

R
ai

nf
ed

, d
ire

ct
 se

ed
in

g
Sa

rin
a

–
(8

0;
 5

1;
 0

)
3.

44
0.

35
N

o 
da

ta
8

20
16

39
.2

69
3;

 −
 1.

96
62

R
ai

nf
ed

, d
ire

ct
 se

ed
in

g
Sa

rin
a

–
(8

0;
 5

1;
 0

)
3.

00
0.

38
3 

pl
ot

s



 Precision Agriculture

1 3

absence of stresses or limitations, every stress coefficient is equal to 1 and the biomass pro-
duction is proportional to the sum of  Kt during the growing cycle. By the same definition, 
the sum of the products WP∗ ⋅ Kt and WP∗ ⋅ Kt ⋅ HI provides an estimation of the potential 
biomass and yield production, respectively.

The feasibility of using the RS-based  Kt for the assessment of biomass production in 
wheat, corn and soybean has been demonstrated in previous experiments (Campos et al. 
2017b, 2018). However, under stress conditions, the spatial scale of the input parameters 
(mainly soil properties) must be fine enough for the assessment of the variability in the 
stresses affecting the crop growth at the sub-field scale. This work analyzed if RS-based 
 Kt could be used for the quantification of the differences in crop growth and if these dif-
ferences can be translated into the variability in potential yield/biomass production. The 
hypothesis behind this assumption is that, for the same crop during the same growing sea-
son in a small area, as is the case of an agricultural plot, the differences in canopy develop-
ment can be attributed to the lack of management uniformity, pests or diseases and the soil 
fertility, expressed in terms of mineral nutrition and water availability. If the application of 
fertilizers and water (for irrigated crops) is homogeneous at the plot scale, the differences 
in the actual growth are exclusively attributable to the soil fertility and the presence of 
pests or diseases. This paper proposes a simplified approach for which the stresses affect-
ing the yield/biomass production are considered unknown and the within-field variability 
is estimated exclusively based on the accumulated value of RS-based  Kt. The only stress 
considered is the cold stress coefficient because it can be estimated in operative applica-
tions just using air temperature data. Although this stress can be considered homogeneous 
at the scale of a commercial farm, its effect on the biomass accumulation could be different 
depending on the actual development of each area monitored during the stress periods. The 
actual yield or biomass production may be lower than this potential but the main objective 
of this work is the analysis of the spatial heterogeneity at the sub-field scale quantified 
as variability in yield and biomass production. The procedure followed is summarized in 
Fig. 1.

Parameterization of the spatial variability model based on vegetation indices

Water productivity, transpiration coefficient and temperature stress coefficient

One of the main weaknesses of almost every CGM for the assessment of the in-field vari-
ability in yield and biomass is the determination of crop transpiration, light interception or, 
specifically,  Kt in the AQUACROP approach. A time series of RS data offers a unique way 
to monitor the spatial distribution of  Kt during the whole growing season. For this purpose, 
the relationship between the VI and the  Kt has been proposed. This study was based on the 
relationship proposed by Duchemin et al. (2006) for wheat using the normalized difference 
vegetation index (NDVI), see Eq. 4.

(2)Biomass = WP∗
⋅

t
∑

to

Kta ⋅ Kst ⋅ Ksf = WP∗
⋅

t
∑

to

Kt ⋅ Ksw ⋅ Kst ⋅ Ksf

(3)Yield = HI ⋅ Biomass

(4)KT = 1.64 ⋅ (NDVI − 0.14)
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As indicated earlier, the only stress considered in this work is  Kst and it was calcu-
lated following Eq. 5 (Raes et al. 2011). The formulation of  Kst is based on the grow-
ing degree days (GDD), calculated as the difference between average daily temperature 
and the base temperature for the crop monitored, 0  °C for wheat. The estimation of 
 Kst requires knowledge of the upper and lower thresholds of GDD to produce biomass, 
these thresholds are 0 and 13 °C for wheat (Raes et al. 2011).

where  Sx and  Sn are the upper and the lower limits of  Kst and were assumed equal to 1.0 
and 0.01 respectively;  Srel is the relative stress level,  Srel is 0.0 and 1.0 at the upper and 
lower threshold of GDD, 13 and 0 °C respectively; r is the rate factor (16.5).

The values of ΣKt·Kst at the pixel scale were converted into biomass production by 
multiplying by a fixed value of WP∗ . The WP∗ used in this work (17.9 g m−2) was based 
on the model calibration proposed by Campos et al. (2018) for wheat in the province of 
Albacete (Southeast Spain) and it is within the range proposed by Raes et al. (2011) for 
wheat.

The yield (grain) production was estimated as the product of the simulated biomass 
multiplied by HI measured in the field. The model results were analyzed with respect 
to the measurements of yield and aboveground biomass in g m−2. As indicated before, 
the simulated values of ground biomass and yield calculated following the methodol-
ogy described do not account for limiting conditions (water or nutrition stresses). Thus, 
the accuracy of these estimates was analyzed with respect to field measurements of 
above ground crop biomass and grain production based on the yield maps obtained by 
combine-mounted grain yield monitors (see the section on “Ground data and satellite 
images”).

(5)Kst =

(

Sn ⋅ Sx
)

Sn +
(

Sx − Sn
)

⋅ exp−r(1−Srel)

Fig. 1  Flow diagram of the procedures followed for the estimation and evaluation of yield and biomass in 
wheat and the within-field variability of both variables. The numerical labels show the order of operations
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Definition of the growing cycle based on spectral vegetation indices

Biomass estimation is based on a sum for which the limits  t0 and t, the actual value of 
WP∗ and the actual values of  Kt must be known (see Eq. 2). The selection of  t0 and t 
was based on thresholds for the VI analyzed and calculated individually for each pixel. 
Using thresholds of the analyzed VI helps to delimit the length of the growing cycle and 
the time trajectory individually for each pixel (see Fig. 2). This methodology is different 
from the selection of  t0 and t based on calendar days, or alternative scales such as the 
thermal time for the whole field and could help to represent the expected variability in 
the crop development (grain maturity stage) and the final biomass accumulation. The 
ability of each approach (VI thresholds or fixed dates) to reproduce the actual variability 
measured in the field was analyzed for a selected data subset (field 2) in the sensitivity 
analysis presented in this work.

The selection of the NDVI threshold for the beginning of the biomass accumula-
tion  (t0) was 0.3 and it is based on the detection of the green-up phase proposed by 
Lobell et al. (2013). The green-up occurs during the initial development phases (tiller-
ing stages). Although this phase does not coincide exactly with the beginning of the bio-
mass accumulation (emergence), there was 2% uncertainty in the estimation of biomass 
accumulation.

The value of NDVI that defined the final biomass accumulation (t) was initially pro-
posed as 0.4 although this value was analyzed in the sensitivity analysis. The final bio-
mass accumulation coincides with the grain maturity for wheat crops. According to pre-
vious experience of directly observing wheat phenology, the physiological maturity of 
the grain occurs for NDVI values around 0.4 for irrigated wheat (González-Gómez et al. 
2018). In the sensitivity analysis, the accuracy of the model was analyzed by varying the 
NDVI threshold that determines the end of the growing cycle (from 0.35 to 0.45) and 
by selecting the end of the growing cycle based on calendar dates (from 0 to 2 weeks 
before the harvest date).

The application of this methodology pixel by pixel and at the scale of a satellite 
image in an operational and simple way was solved using the software TONIpbp (Tool 
for Numerical Integration pixel by pixel), developed by the GIS and Remote Sensing 
Group from the University of Castilla-La Mancha in the frame of the project FATIMA 
(http://fatim a-h2020 .eu, last accessed October 2017).

Fig. 2  Representation of how the growing cycle was delimited based on NDVI thresholds for 3 pixels with 
different production (high, medium and low) in field 3 (see “Ground data and satellite images” section)

http://fatima-h2020.eu
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Ground data and satellite images

The samples of aboveground biomass were collected at different measurement loca-
tions and dates during the growing season, see Table  1. Each sample was composed of 
3 sub-samples. In each sub-sample, the aboveground biomass was manually collected for 
1.5 m along 2 adjacent rows and dried in an oven for more than 48 h at 60 °C. Each of 
the measurement locations was situated in a homogeneous area with a minimum area of 
1  ha. The homogeneous areas were delimited based on maps of potential biomass pro-
duction obtained for previous crops following the model for spatial variability based on 
VI (described in “Parameterization of the spatial variability model based on vegetation 
indices”).

The spatial distribution of the harvestable yield was mapped using a combine-mounted 
grain yield monitor (Trimble CFX750). The measurements of the yield monitor were cali-
brated against the total production weighed every 3–4 ha and spikes in yield detected at the 
beginning and the end of segments were removed manually. For quantitative analysis of the 
yield maps, the yield data points within an approximately 9 m2 area were averaged. This is 
an area equivalent to 3 by 3 pixels of the maps based on RS data. This is a common strat-
egy working with RS data due to the uncertainty in the geolocation of the pixels. The size 
of the pixels varied for the maps based on RS data in 2015 (30 m) and 2016 (10 m). The 
difference in the pixel size depended on the satellite images used in the model (Landsat 8 
or Sentinel 2A).

The temporal evolution of the NDVI for every pixel in each field monitored was 
obtained from a time series of images acquired by the Landsat 8 and Sentinel 2A satellites. 
The images used in the analysis for each field are presented in Table 2. The maps of vari-
ability obtained during 2015 were based on Landsat 8 and the estimates of yield, biomass 
and variability were obtained at the scale of this sensor (30 m). The maps obtained during 
2016 were mainly based on Sentinel 2A and the estimates of yield, biomass and variabil-
ity were obtained at the scale of this sensor (10 m), although some images from Landsat 
8 were also used during 2016 to increase the temporal resolution of the time series. As 
shown by Campos et al. (2018), the number of images must be enough to describe inflex-
ion points of the growing cycle, thus the temporal distribution of the images through the 
growing cycle is more important than the number of images. For the integration of the dif-
ferent spatial resolutions during 2016, the software TONI resizes the Landsat pixel at the 
scale of Sentinel data and averages the NDVI values based on the original 30 m Landsat 
pixels. The effect of the atmosphere and the possible differences in the inter-calibration 
of the sensors were compensated for using a normalization procedure of the NDVI (Chen 
et al. 2005) based on pseudo-invariant surfaces (dense vegetation like alfalfa and agricul-
tural bare soils).

The results of the model were analyzed in terms of yield, biomass and the within-field 
variability compared to the variability determined using ground measurements. The vari-
ability measured in the field was quantified as the ratio between actual yield or biomass in 
any given location and the mean value for the analyzed variable in the field. Equation 6 
represents the estimation of the variability for the pixel i based on the yield measured in the 
pixel  (Yi) and the mean yield in the field monitored  (Yavr). This concept is equivalent to the 
normalized yield proposed by Stafford et al. (1996) for the comparison of the variability in 
grain production in a multi-annual analysis.

(6)Variabilityi =
Yi

Yavr



 Precision Agriculture

1 3

Ta
bl

e 
2 

 D
at

es
 (d

ay
/m

on
th

) o
f t

he
 im

ag
es

 u
se

d 
in

 th
e 

an
al

ys
is

L8
 la

nd
sa

t 8
, S

2 
Se

nt
in

el
 2

 A

Fi
el

d 
(y

ea
r)

Se
pt

em
be

r–
D

ec
em

be
r

Ja
nu

ar
y–

Fe
br

ua
ry

M
ar

ch
A

pr
il

M
ay

Ju
ne

Ju
ly

1 
(2

01
5)

14
/0

1 
(L

8)
10

/0
3 

(L
8)

20
/0

4 
(L

8)
06

/0
5 

(L
8)

07
/0

6 
(L

8)
09

/0
7 

(L
8)

22
/0

5 
(L

8)
30

/0
6 

(L
8)

2 
(2

01
6)

4/
02

 (S
2)

05
/0

3 
(L

8)
10

/0
4 

(S
2)

01
/0

5 
(S

2)
09

/0
6 

(L
8)

03
/0

7 
(S

2)
21

/0
2 

(S
2)

25
/0

3 
(S

2)
14

/0
4 

(S
2)

11
/0

5 
(S

2)
20

/0
6 

(S
2)

24
/0

4 
(S

2)
31

/0
5 

(L
8)

23
/0

6 
(S

2)
25

/0
6 

(L
8)

30
/0

6 
(S

2)
3 

(2
01

5)
14

/0
1 

(L
8)

10
/0

3 
(L

8)
20

/0
4 

(L
8)

06
/0

5 
(L

8)
07

/0
6 

(L
8)

22
/0

5 
(L

8)
30

/0
6 

(L
8)

4 
(2

01
5)

14
/0

1 
(L

8)
10

/0
3 

(L
8)

20
/0

4 
(L

8)
06

/0
5 

(L
8)

07
/0

6 
(L

8)
09

/0
7 

(L
8)

22
/0

5 
(L

8)
30

/0
6 

(L
8)

5 
(2

01
6)

17
/0

1 
(L

8)
01

/0
5 

(S
2)

10
/0

6 
(S

2)
24

/0
1 

(L
8)

12
/0

3 
(S

2)
01

/0
4 

(S
2)

13
/0

6 
(S

2)
02

/0
2(

L8
)

25
/0

3 
(S

2)
14

/0
4 

(S
2)

21
/0

5 
(S

2)
16

/0
6 

(S
2)

02
/0

7 
(L

8)
04

/0
2 

(S
2)

24
/0

4 
(S

2)
24

/0
5 

(S
2)

20
/0

6 
(S

2)
23

/0
6 

(S
2)

6,
 7

 a
nd

 8
 (2

01
6)

27
/0

9 
(L

8)
13

/1
1 

(S
2)

24
/0

1 
(L

8)
12

/0
3 

(S
2)

24
/0

4 
(S

2)
01

/0
5 

(S
2)

10
/0

6 
(S

2)
03

/1
2 

(S
2)

04
/0

2 
(S

2)
25

/0
3 

(S
2)

21
/0

5 
(S

2)
16

/1
2 

(L
8)



Precision Agriculture 

1 3

On the basis that WP∗ can be considered constant for the same crop under constant  CO2 
concentrations (Steduto et al. 2007), the estimation of the variability in biomass produc-
tion did not require a priori knowledge of WP∗ . The estimation of the variability in yield 
production requires the knowledge of the HI for each point analyzed. However, the spatial 
distribution of this factor should be considered unknown in operational applications and 
this value was considered constant for the whole field in this work. Consequently, the esti-
mation of the variability in yield dod not require a priori knowledge of HI or WP∗ and it 
was exclusively based on the sum of the product  Kt·Kst. For the comparison of the results 
of the model and the ground measurements of biomass, the values calculated by the model 
were averaged over 1 ha around each measurement location. For the comparison with the 
yield maps, the values calculated by the model and based on the yield maps were averaged 
for an area equivalent to 3 by 3 pixels of the satellite images used in the model. In both 
cases, the field data were compared with the yield and biomass estimated by the model at 
grain maturity.

Results

Analysis of the proposed approach for the assessment of yield variability based 
on vegetation indices

The summary of the results in terms of measured and modeled values of yield and the sta-
tistics comparing the results in terms of yield and variability are presented in Table 3. Fig-
ure 3 shows the correlation between measured and modelled values of yield and variability 
and the corresponding r2 and p values obtained for the linear regression. It should be noted 
that the r2 and p values are the same for the correlations of biomass and variability data, 
hence a unique pair of values was represented in each graph.

The analysis of the linear regression indicated that the correlation between measured 
and modelled yield was significant for every field monitored (p < 0.05), although the values 

Table 3  Summary of the results in terms of measured and modeled yield and statistics comparing the meas-
ured and modeled values of yield and variability for the areas monitored, excluding borders and unproduc-
tive zones like paths

SD standard deviation, RMSE root mean square error, d improved index of agreement (Willmott et al. 2012) 
(fields 1–5 are irrigated and 6–8 are not)

Field ID Yield monitor Modeled values RMSE d

Yield 
average 
(t ha−1)

SD (t ha−1) Yield 
average 
(t ha−1)

SD (t ha−1) Yield 
(t ha−1)

Variability Yield Variability

1 8.82 0.47 8.91 0.20 0.37 0.04 0.63 0.64
2 7.51 0.43 7.52 0.29 0.34 0.04 0.64 0.64
3 7.45 0.52 7.29 0.23 0.42 0.05 0.61 0.61
4 4.03 0.76 3.99 0.60 0.27 0.07 0.83 0.83
5 5.03 0.37 4.75 0.40 0.42 0.06 0.42 0.57
6 3.12 0.36 4.74 0.32 1.65 0.09 − 0.64 0.62
7 3.44 0.59 4.67 0.57 1.33 0.13 − 0.20 0.62
8 3.00 0.28 4.49 0.34 1.53 0.09 − 0.71 0.50
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of r2 revealed a poor correlation for some fields as analyzed below (see Fig. 3). The cor-
relation of the measured and modelled yield confirmed the potential of the model to repro-
duce the spatial patterns and the absolute yield values for the irrigated fields (fields 1–5). 
Conversely, the results indicated a clear overestimation of the yield for the unirrigated 
fields (see Fig. 3f–h). On the other hand, the values of the standard deviation (SD) pre-
sented in Table 3 indicate that the range of yield estimated by the model was, in general, 

Fig. 3  Comparison of measured and modeled variability (left and bottom axes) and yield (right and top 
axes) based on field measurements (yield meas.) and the approach presented in Eqs. 2 and 3 (yield mod.). 
The graphs contain the  r2 and p value for the linear regressions between measured and modelled variables
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slightly lower that the measurements based on the yield monitor. This effect was evident 
for fields 1, 2 and 3 and is apparent in the correlations shown in Fig. 3a–c. For these fields, 
the model tended to overestimate the crop yield in the less productive areas and underes-
timate the actual yield in the more productive areas. These estimation biases had conse-
quences in the comparison in terms of the variability.

The range of the variability based on the measured and modelled data was approxi-
mately 60% of the mean values for the most heterogeneous fields (fields 4, 6, 7 and 8). The 
variability estimated for the most homogeneous fields (fields 1, 2, 3 and 5) was less than 
40% of the mean values (see Fig. 3). The correlation between measured and modelled vari-
ability (see Fig. 3) demonstrated the ability of the model for spatial variability based on VI 
to quantify the within-field variability at the spatial scales analyzed (i.e. 1 ha or finer reso-
lution). The correlation between measured and modelled variability was significant also for 
the fields under deficit conditions, independently of the bias introduced by the assumption 
of the potential conditions in every field. However, it is fair to say that these results indi-
cated that the proposed approach did not reproduce some of the effects affecting the spatial 
distribution of the crop yield, as indicated by the poor correlation coefficients obtained in 
the regressions, also in the case of irrigated fields (see Fig. 3). The accuracy of the model, 
quantified as the root mean square error (RMSE), indicates that the model was not able 
to reproduce about 13% of the measured variability in the fields cultivated under rainfed 
conditions (fields 6–8). The accuracy of the model was higher in the irrigated fields (fields 
1–5), with the RMSE being lower than 7% of variability for each irrigated field.

The visual comparison of the yield maps and the maps derived from the proposed meth-
odology (see Fig. 4) revealed the capability of the model for spatial variability based on VI 
to differentiate areas with differences in crop growth and production. As presented in the 
representation of field 4, the model was able to identify the area with higher production 
in a strip crossing the field from the Northwest to the Southeast. This strip coincides with 
the bottom of a valley between gentle slopes, thus the possible explanation of the higher 
productivity is greater soil fertility and water availability in this area. In field 7, the model 
denoted a linear pattern predicting higher production in the West of the field in agreement 
with the yield data obtained.

The sources of uncertainty in the model are the estimation of the spatial distribution of 
crop biomass and the possible uncertainty associated with the use of a fixed value of HI 
for the whole field. The ability of the proposed approach to reproduce the variability in 
biomass production is analyzed in the next subsection and the effect of a fixed value of HI 
is discussed in the “Discussion”.

Analysis of the proposed approach for the assessment of biomass variability

The summary of the results in terms of measured and modeled values of biomass and the 
statistics comparing the results of biomass and biomass variability are presented in Table 4. 
Figure 5 represents the correlation between measured and modelled values of biomass and 
variability. The results corroborated the conclusions obtained for the analysis in terms of 
yield. The model provided a precise estimation of the biomass production for fields 1–5 
(Fig. 5a–e), while the model overestimated the biomass production in field 8 under rainfed 
conditions (Fig. 5f). Biomass data was not available for fields 6 and 7. The RMSE compar-
ing measured and modelled biomass was lower than 2.7 t  ha−1 for every analyzed field and 
lower than 1.5 t  ha−1 (around 10% of the average value) for the fields with higher produc-
tivity (irrigated fields).
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Fig. 4  Yield maps derived from the yield monitor and the accumulated value of the transpiration coefficient 
 (Kt) times the temperature stress coefficient  (Kst) for two selected fields (field 4 and field 7)
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Table 4  Summary of the results in terms of measured and modeled biomass (Bio.) and statistics comparing 
the measured and modeled values of Bio. and variability (Var.)

SD standard deviation, RMSE root mean square error, d improved index of agreement (Willmott et al. 2012)

Field ID Ground measurements Modeled values RMSE d

Mean 
biomass 
(t ha−1)

SD 
(t ha−1)

Mean 
biomass 
(t ha−1)

SD 
(t ha−1)

Biomass 
(t ha−1)

Variabil-
ity

Biomass Variability

1 17.52 1.90 17.55 0.43 1.49 0.09 0.60 0.60
2 16.21 1.37 17.34 1.01 1.39 0.05 0.44 0.63
3 14.21 1.52 14.76 0.71 1.45 0.09 0.48 0.54
4 10.98 2.89 11.30 2.05 1.46 0.13 0.73 0.75
5 13.95 0.76 14.30 0.69 0.44 0.03 0.69 0.71
8 8.39 0.28 11.01 0.96 2.69 0.06 − 0.84 − 0.03

Fig. 5  Comparison of measured and modeled variability based on biomass (left and bottom axes) and bio-
mass data (right and top axes) measured in the field (Biomass meas.) and modelled following Eq. 2 (Bio-
mass mod.). The graphs contain the r2 and p values for the linear regressions between measured and mod-
elled variables
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The comparison indicated that, in general terms, the SD was greater for the biomass 
based on ground data, these results were evident for fields 1, 2 and 3. The variability based 
on biomass data was less than 60% of the mean values for the most heterogeneous fields 
(fields 1 and 4) and less than 40% of the mean values for the most homogeneous fields 
(fields 2, 3, 5 and 8) (see Fig. 5). The accuracy of the model as quantified by the RMSE 
indicated that the model was not able to reproduce about 13% of the measured variabil-
ity in the most heterogeneous field (RMSE = 0.13 in field 4). In the most homogeneous 
fields (fields 2, 3, 5 and 8), the RMSE was lower than 0.09. The correlation between meas-
ured and modelled variability (Fig. 5) pointed to the good performance of the proposed 
approach at reproducing the within-field variability in terms of biomass. The analysis of 
the r2 and p values obtained for the regressions point to the necessity of improving estima-
tions of biomass and variability only in fields 2 and 8, although the values of these statis-
tics could be biased by the low range of the variables correlated (Willmot 1982).

In view of the results, the model reproduced most of the variability registered in every 
measurement location in fields 2, 3, 4, 5 and 8 with reasonable accuracy. The variability 
calculated for the biomass data differed from the modelled values only in some extreme 
points for field 1 (see Fig. 5). It should be noted that field 1 was not within the most het-
erogeneous fields in terms of yield (see Fig. 3), but some extreme values obtained in the 
biomass measurements increased the actual range of variability based on biomass data. 
The possible explanation for these differences is that the spatial representativeness of the 
biomass measurements could introduce additional uncertainty which is addressed in the 
discussion section.

Selection of the NDVI threshold for the definition the growing cycle

The results of the sensitivity analysis indicated that the selection of various alternatives 
for the definition of the end of the growing cycle, represented by the variable t in Eq. 2, 
affected the accuracy of the model in reproducing the crop yield. In general terms, the 
applications of the model based on fixed dates (0, 1 or 2 weeks before harvest) resulted 
in the poorest performance in terms of yield in comparison to the applications based on 
thresholds of the NDVI (0.35, 0.4 or 0.45) for each pixel, see Table 5. In contrast, the sen-
sitivity analysis was not clear in determining the most accurate approach (NDVI thresholds 

Table 5  Statistics comparing 
the results of the model in terms 
of measured and modeled yield 
and variability for different 
approaches to the selection of 
the end of the growing cycle in 
field 2

RMSE root mean square error, MBE mean bias error, d improved 
index of agreement (Willmott et al. 2012)

Yield data (t ha−1) Variability

RMSE MBE d RMSE d

Weeks before harvest
 − 2 0.34 − 0.13 0.62 0.042 0.65
 − 1 0.42 − 0.27 0.53 0.042 0.65
 0 0.50 − 0.38 0.42 0.042 0.64

NDVI threshold
 0.35 0.33 − 0.01 0.64 0.044 0.64
 0.40 0.34 − 0.07 0.64 0.044 0.64
 0.45 0.34 − 0.13 0.62 0.042 0.64
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versus fixed dates) for the assessment of the spatial variability. The statistics comparing 
measured and modelled variability were similar in terms of RMSE and d for the different 
approaches proposed for the selection of t.

Given the results of the sensitivity analysis, the methodology based on the threshold 
of NDVI equal to 0.4 was selected in this work. In the field analyzed in this section (field 
2), the threshold equal to 0.45 produced more precise estimates, however this threshold 
seems to be excessive for the rainfed fields monitored in this work. The approach based on 
thresholds was shown to be more precise than fixed dates in reproducing yield values and 
the threshold equal to 0.4 agrees with NDVI values observed at physiological maturity of 
wheat grain in the study area (González-Gómez et al. 2018). The identification of physi-
ological maturity using the NDVI threshold proposed by González-Gómez et  al. (2018) 
is based on few experiments (20 commercial fields monitored during 10 growing seasons) 
and could vary for different varieties and management approaches.

Discussion

Strengths and weakness of the model for spatial variability based on vegetation 
indices

The results obtained in this work revealed the potential of the proposed approach for 
assessing within-field variability in cultivated wheat. The analysis of the results indicated 
that an accurate estimation of crop biomass and yield production requires consideration of 
the stresses affecting these processes. The RMSE comparing measured and modelled yield 
was lower than 0.45  t ha−1 in the irrigated fields (fields 1–5) while the RMSE increased 
up to about 1.3 t  ha−1 in the rainfed fields (fields 6–8) due to the presence of water stress. 
The RMSE comparing measured and modelled biomass data was lower than 1.5 t ha−1 in 
irrigated fields (fields 1–5) while the RMSE increased up to around 2.7 t ha−1 in the rain-
fed field (field 8). The RMSEs comparing measured and modelled yield and biomass in 
irrigated fields were within the range obtained by more complex approaches. Similarly, 
Iqbal et al. (2014) obtained a RMSE of 0.9 t ha−1 for biomass and 0.58 t ha−1 for yield with 
the AQUACROP model calibrated in experimental plots (5  m × 10  m). Jin et  al. (2017) 
obtained a RMSE over 1.53 t ha−1 when simulating biomass and 0.81 t ha−1 for simulated 
yield. Their studies were at the regional scale (40 samples) using the AQUACROP model 
calibrated for the study area. In addition, the model assimilates remote sensing estimates of 
ground cover (optical and radar) in an iterative approach that modifies the model parame-
terization for the best fitting remote sensing estimates. Using the same model calibrated for 
the study area, Jin et al. (2014) obtained RMSEs of 1.29 t ha−1 and 0.52 t ha−1 simulating 
biomass and yield, respectively. According to the literature review, the proposed approach 
did not significantly improve the accuracy of previous approaches; however, the analyses 
of the variability demonstrated the potential of the model to account for the heterogene-
ity measured in the field. The values of d and RMSE pointed to a clear improvement in 
model accuracy when the data were analyzed in terms of variability compared to analyses 
in terms of yield (see Table 3). In general, the analysis of variability increased the values 
of d and reduced the ratio between the RMSE and the mean values. This effect was more 
evident in the rainfed fields.

As indicated in the results section, the main sources of uncertainty for the simulation 
of the within-field variability are the possible effect of the stresses not considered in the 
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proposed approach and the consideration of a fixed value of the harvest index. The most 
common stresses in the study area are water and nitrogen deficits. Both stresses affect the 
processes of yield and biomass accumulation in two ways: controlling plant growth (expan-
sion) and reducing the efficiency of the biomass production process. The reduction in plant 
growth-expansion occurs in the initial phases of the stresses. These effects have been quan-
tified for wheat in terms of leaf development and tillering (Longnecker et al. 1993; Maas 
and Grieve 1990) or light interception at canopy scale (Garcia et al. 1988). While the stress 
conditions develop and the deficit is more evident, the plants react reducing the efficiency 
of the biomass production process and it is generally accepted that the reduction of plant 
expansion occurs prior to the limitations on biomass efficiency (Ings et al. 2013; Jamieson 
et al. 1998; Ritchie et al. 1998).

The use of the accumulated value of the reflectance based  Kt as an indicator of the 
various stresses affecting plant expansion is qualitatively equivalent to the experimental 
measurement of these effects. However, the stresses that reduce the efficiency of yield 
and biomass production could affect the accumulation of biomass beyond canopy expan-
sion, adding uncertainty to the estimates based on the proposed approach. From the results 
obtained in this work, the accumulated value of  Kt reflected most of the variability meas-
ured in the fields, including fields under severe water stress conditions. The assumption 
that the zones with lower plant expansion are exposed to higher stress levels for biomass 
production seems to be a reasonable hypothesis. It is fair to say that in the analyzed fields, 
stresses occurred during most of the growing cycle, reducing the canopy expansion and the 
duration of the cycle. However, the performance of the proposed approach should be ana-
lyzed under different conditions. In particular, the performance of the proposed approach 
must be analyzed when the stresses occur at the end of the growing cycle, when most of 
the crop structure has been developed and the stresses exclusively affect the accumulation 
of yield. The approach selected in this study was exclusively based on the  Kt derived from 
RS images and the maximum and minimum daily air temperatures used for the estimation 
of  Kst. Thus, the methodology can be easily evaluated in other agronomic areas using RS 
images and ground meteorological stations. Alternatively, the application of this approach 
in areas with low availability of ground data can be based on air temperature estimates 
based on satellite platforms, but the uncertainties associated with the data sources should 
be analyzed. Other interesting variations in the proposed approach are the use of biomass 
production models based on light use efficiency and water productivity. It should be noted 
that the selection of the most adequate approach for the simulation of the biomass produc-
tion in each crop and area is still an open discussion. However, different approaches have 
been demonstrated to be equivalent to the one reported here for the simulation of the wheat 
biomass production in Albacete (Spain) (Campos et al. 2018) and similar performance in 
reproducing the within-field variability can be expected.

In addition to the possible effect of the various stresses increasing the variability at the 
field scale, the assumption of a fixed value of HI could reduce the sensitivity of the model 
for reproducing this variability. The field data analyzed in this study pointed to a positive 
linear correlation between actual yield and HI  (r2 > 0.8) if the regression is analyzed for 
the average data obtained in each field as presented in Table  1. A similar phenomenon 
can be expected at the sub-field scale and probably the HI is correlated with final yield at 
the within-field scale. However, the correlation between HI and yield at each measurement 
location was not clear for every analyzed field. The  r2 for the linear correlation between 
HI and yield varied from 0.1 for field 2 to 0.99 for field 8. The narrow range of both mag-
nitudes and the limited number of measurements in each field (3–9 measurements) could 
affect the significance of this correlation. In consequence, this study did not explore the 
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possible improvement of the proposed approach based on the variability of HI, but further 
studies should consider the implementation of operative approaches for the assessment of 
HI and its spatial distribution.

Additional sources of uncertainty, not directly attributable to the model, are the prob-
lems associated with the size and the shape of the fields. In general terms, the poorest 
performance was obtained in small fields (fields 6, 7) with an average size less than 6 ha. 
In these conditions, the signal captured in each pixel can be mixed with border areas and 
the accuracy of the yield monitor is affected working in short segments (Arslan and Colvin 
2002b).

Evidence about the necessity of considering temporal evolution during the growing 
cycle for the assessment of the spatial variability

Additional evidence obtained in the analyzed fields demonstrated the necessity of con-
sidering the whole growing cycle for the assessment of the spatial variability and yield 
production rather than short periods or selected dates. For the irrigated fields analyzed in 
this work, the temporal evolution of the NDVI, or related variables, reached the maximum 
values during the stationary phase (plateau period). During this phase, the crop reached 
the maximum coverage and maximizes the rate of biomass accumulation (g of biomass per 
unit of time), but this period did not correspond with the maximum accumulated biomass 
in the field (g of biomass per unit of area). An example of this effect is provided in Fig. 6, 
comparing the temporal evolution of the NDVI for two areas (A and B) with different yield 
and similar maximum values of NDVI during the stationary phase. It is fair to say that 
most multispectral vegetation indices saturate for LAI values from 3 to 5 depending on the 
canopy architecture. Thus, the selection of more sophisticated indices such as LAI esti-
mates based on neural networks or indicators based on hyperspectral sensors could provide 
higher sensitivity during the plateau. However, even considering the possible improve-
ment of the indicators, the selection of single dates or short periods is seriously limiting 
for the assessment of variability at the subfield scale. According to the data, the differ-
ences obtained during determinate crop stages will not necessarily result in differences in 
crop production. The yield is the result of an accumulation process and the total values 
registered at harvest depend on the plant vigor and the length of the growing cycle. As pre-
sented in Fig. 6, the NDVI values and thus the accumulation of biomass can be displaced 
in time for the different areas. An example of this peculiarity is provided in Fig. 6, compar-
ing the temporal evolution of NDVI for two areas (A and C). Area C had greater NDVI 
values (lower  Kcb and crop expansion) during the phase of rapid growth (from March to 
May). In contrast, area A maintained greater values of NDVI during the crop senescence 
(late May and June). Consistently, both areas resulted in similar values of the accumulated 
transpiration coefficient and measured yield. Based on this evidence, it is expected that the 
estimates of yield diverge for other methodologies that consider only selected periods dur-
ing the growing cycle.

Selection of thresholds for the definition of the growing cycle

The empirical evidence presented in this study demonstrated the necessity of consider-
ing the entire growing cycle for the assessment of spatial variability. Yield and bio-
mass are dynamic processes, developed throughout the whole growing cycle and, as 
demonstrated in this work, the patterns of crop variability change during the cycle. An 
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additional source of uncertainty is the selection of the beginning and end of the grow-
ing cycle. The results of the sensitivity analysis pointed to the relative advantage of 
the selection of  t0 and t based on NDVI thresholds. This method implicitly assumes 
that the particular conditions of each area (i.e. topography, soil albedo, orientation, soil 
composition) modify the microclimatic conditions affecting crop growth and devel-
opment. Correspondingly, this methodology assumes that the effect of environmental 
stresses will be different in the diverse zones analyzed so crop growth and develop-
ment will vary. These assumptions are not different to the conventions behind the use of 
VI thresholds for the definition of the crop cycle at the field scale proposed by Lobell 
et al. (2003) and basically the same principle was applied to different zones in the same 
field. The thresholds proposed in this work were based on the analysis of one field but 
are consistent with previous experiences determining the NDVI values at grain matu-
rity in the study area (González-Gómez et al. 2018). However, it should be noted that 
more precise thresholds can be proposed for different management and development 

Fig. 6  Comparison of the spatial variability derived from grain monitors and the accumulated value of the 
transpiration coefficient (Kt). The lower graph represents the temporal evolution of NDVI in selected loca-
tions (A, B and C) for field 2
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conditions. In particular, the NDVI threshold considered for the end of the growing 
cycle could be excessive for rainfed fields with low canopy expansion.

Conclusions

The results obtained in this work corroborated the use of the accumulated value of  Kt as a 
potentially sound method for the assessment of variability at sub-field scale. The values of 
accumulated  Kt defined differences in crop growth similar to the biomass measurements 
and yield maps obtained for a wide range of management conditions and yield production. 
The assessment of within-field variability must be based on analysis of the whole growing 
cycle and the selection of the beginning and the end of the growing cycle based exclusively 
on RS data offered promising results.

The proposed approach improves on other methodologies for assessment of spatial 
variability. It can be applied in retrospective analysis using available databases of satel-
lite images and maps can be obtained and analyzed during the season, providing a multi-
annual series of crop heterogeneity. In addition, these results open the possibility for fur-
ther interesting applications based on the characterization of field heterogeneity as is the 
case of variable rate irrigation and fertilization approaches.
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